
DOI: 10.1111/cgf.12265 COMPUTER GRAPHICS forum
Volume 33 (2014), number 1 pp. 178–189

Image Space Rendering of Point Clouds Using the HPR Operator

R. Machado e Silva, C. Esperança, R. Marroquim and A. A. F. Oliveira

Computer and Systems Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
renangms@gmail.com; {esperanc, marroquim, oliveira}@cos.ufrj.br

Abstract
The hidden point removal (HPR) operator introduced by Katz et al. [KTB07] provides an elegant solution for the problem of
estimating the visibility of points in point samplings of surfaces. Since the method requires computing the three-dimensional
convex hull of a set with the same cardinality as the original cloud, the method has been largely viewed as impractical for
real-time rendering of medium to large clouds. In this paper we examine how the HPR operator can be used more efficiently
by combining several image space techniques, including an approximate convex hull algorithm, cloud sampling, and GPU
programming. Experiments show that this combination permits faster renderings without overly compromising the accuracy.

Keywords: surface reconstruction rendering, visibility determination

ACM CCS: I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling—Geometric algorithms; languages
and systems.

1. Introduction

The term ‘point cloud’ refers to a collection of points in 3D space
which typically are taken from the external surface of an object.
This sampling is most often produced with the aid of 3D scanners,
but may also be the result of some modelling process. In addition to
position, each sample in a point cloud may contain other information
about the surface such as normal or colour.

Point clouds have also been proposed as an alternative to
other geometric representations such as polygonal meshes, for in-
stance [GP07]. In fact, dense polygonal meshes can in many cases
dispense with the topology information and faithfully represent the
object solely by means of its vertices. In this case, surface recon-
struction, that is, the process of estimating mesh topology using only
vertex positions is an important and actively researched problem.

Another related problem is that of point cloud visibility. In short,
assuming that the cloud is a sampling of a surface, a cloud point
is deemed visible to a given observer if the corresponding surface
point is also visible. Although surface reconstruction can be used to
determine this information, direct methods have also been proposed.
Most of these, however, can be categorized rendering methods, such
as Surface Splatting [ZPvBG01]. In other words, rather than merely
determining whether a given point is visible, such methods perform

a rendering of the implied object surface. Moreover, such methods
usually work in image space, that is, they solve the problem for a
particular rectangular grid of pixels representing the image.

On the other hand, the hidden point removal (HPR) operator
proposed by Katz et al. [KTB07] is a simple algorithm to determine
visibility in point clouds without rendering them or performing
surface reconstruction. The operator consists of two steps. First, all
points of the cloud are transformed by an operation called inversion.
Then, the convex hull of the set containing the viewpoint and the
transformed points is computed. A point is deemed visible if its
transformed version appears as a vertex in the convex hull. Since
the algorithm takes place in object space, it is not influenced by
screen resolution. The method produces good results with dense
or sparse clouds by calibrating the inversion transformation with
respect to the cloud density. This requires the point sampling to be
fairly uniform. Formally speaking, it requires that the cloud be an
ε-sampling of a surface, that is, it must be the case that any disk on
the surface with radius bigger than ε must contain at least one point
of the cloud.

Rather than using a rendering method to determine visibility, it
is possible to use the visibility obtained with the HPR operator
to perform a rendering of the cloud [KTB07]. This application,
however, is hindered by the fact that it depends on the computation

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

178

R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator 179

of a 3D convex hull algorithm, a costly operation that has been show
to run in �(n log n) time. Inasmuch as this can be alleviated, say,
by using the enhanced computing power of modern GPUs, the fact
that the method runs in object space means that it is not subject to
adaptation to the conditions of the rendering. In other words, the
method will perform essentially the same work regardlessly of the
kind of projection being employed or the resolution of the screen.

This paper, an extended version of [SEO12], describes an efficient
way of implementing the HPR operator so that it can be used for
rendering point clouds at interactive rates. To accomplish this, we
use several image-space techniques. The main idea is to compute
an approximate convex hull using an angular grid, which makes
it straightforward to use GPU programming models. The rest of
the paper is divided as follows: Section 2 reviews earlier work
proposed for point cloud rendering, with special emphasis on the
HPR operator. Section 3 describes how convex hull approximations
can be produced using spatial decomposition of the point cloud,
discussing in detail our own tackle on the problem by refining a
solution proposed by Kavan et al. [KKZ06]. Section 4 explains
the general form of our rendering algorithm. Section 5 describes a
specific implementation of the algorithm using shaders; Section 6
discusses how to estimate values for the algorithm parameters so as
to obtain the desired trade-off between rendering quality and speed.
Section 7 presents the results of several experiments comparing with
the original approach of Katz et al. [KTB07]. Finally, in Section 8 we
present a few concluding remarks and directions for future research.

2. Related Work

In Computer Graphics, the problem of visibility consists of de-
termining which parts of the objects in a scene should actually
appear in a rendering of that scene. This problem assumes differ-
ent characteristics depending on the kind of representation used for
the objects. A common instance of the visibility problem is known
as the hidden surface problem, and corresponds to objects repre-
sented by their boundary surfaces. Well-known techniques such as
z-buffers and ray casting require some means of sampling the sur-
face in a continuous way. In the case of surfaces represented by
point clouds, the fabric of the surface must be inferred in an indirect
way. For instance, one may sample the surface using ‘thick’ rays in
the form of cylinders [SJ00] or cones [WS03], but these techniques
are even more computing intensive than the traditional ray-casting
of surfaces represented by meshes. Ray-casting can also resort to
fitting a primitive with positive area—an ellipse, say—on the neigh-
bourhood being sampled [WS05]. A popular alternative is to use
splatting methods [SP04], where each point is rendered affecting
a small region of the screen, typically using a gaussian blot. The
correct visibility is ensured by traversing the point cloud from back
to front or using the z-buffer [TC10]. Another interesting idea is to
use multi-resolution reconstruction filters for ‘filling out’ the spaces
between points [MKC08].

Rather than probing the point cloud directly, one may try to obtain
a more suitable surface representation such as a polygonal mesh. If
the point cloud was obtained from a 3D scanner, then the surface is
a height map and thus inherits the regular grid topology used by the
device [TL94], [CL96]. Some methods do not require an a priori
topology, but make use of the normal vectors which must be known

Figure 1: The green polygon is the spherical flipping of the blue
polygon. The red polygon is the convex hull of the set of points in
the flipped object plus the centre C of the circle.

for each point sample [KBH06]. In contrast, other methods such
as [HDD*92] do not require either topology or normal vectors.

2.1. The HPR operator

The HPR operator described by Katz et al. [KTB07], unlike other
point cloud techniques, tries to establish the visibility of each point
directly, that is, independently of the rendering and without re-
constructing the surface. Thus, unlike the previously discussed
approaches, it is an object space technique, although the present
paper, in a sense, is all about how to mix in some image space
techniques.

The method does not make use of normal information nor does
it require that the cloud be a height map or conform to any known
topology. It consists of two steps: inversion and the determining of
a convex hull.

The inversion step maps the points to a dual space. Let P be
a point sampling of surface S, and C denote the point of view.
Then, without loss of generality, P is first translated to a coordinate
system with origin in C. The inversion proper is a function which
maps a point pi ∈ P to some point p̂i along the ray from C to pi

in a monotonously decreasing fashion with respect to ||pi ||. This is
equivalent to say that ||p̂i || decreases as ||pi || increases and vice
versa. While many functions satisfy this requirement, Katz et al.
employ the spherical flipping function.

Consider a d-dimensional sphere with radius R centred at the
origin C, such that it contains all points in P . Then, spherical
flipping reflects a point pi ∈ P with respect to the sphere according
to

p̂i = f (pi) = pi + 2(R − ||pi ||) pi

||pi || . (1)

This inversion function maps every point inside the sphere to a
corresponding point outside the sphere as shown in Figure 1.

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

180 R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator

Table 1: Performance comparison.

Approx. HPR

FPS

Exact HPR CPU CUDA Shader

Model R k #vis pts fps #vis pts pts Faces pts Faces pts Splatting

Bimba 3100 254 016 27 722 2.9 23 627 20 18 100 77 126 51
Armadillo 5400 857 476 61 393 1.1 50 337 7.5 7 55 36 69 45
Happy Buddha 6904 2 569 609 16 2887 0.4 126 306 2.6 2.3 7.6 6 8.5 6.2
Buddha 9500 2 350 089 218 632 0.3 170 972 2.5 2.2 11 7 18.5 11.5
Asian Dragon 25 637 5 919 489 503 988 0.1 498 656 1 0.8 7.8 4.3 5.2 3

Let ̂P = {p̂i = f (pi)|pi ∈ P } be the cloud of inverted points.
Then, the second step of the method consists of finding the convex
hull of set ̂P ∪ {C} A point pi is considered to be visible if p̂i lies
on the convex hull (see Figure 1).

The HPR operator may be applied for point clouds in any number
of dimensions, although we are mainly interested in points in �3.
The inversion step is clearly O(n), regardlessly of dimension, where
n is the total number of points. The convex hull may be computed
O(n log n), for 2D and 3D point clouds.

In the original paper [KTB07] the authors show that the method
is correct when the point cloud is considered to contain all of the
surface points. In this case, every point which the method consid-
ers to be visible is indeed visible. Note that some visible points
may be considered non-visible, that is, the method may report false
negatives. The number of false negatives diminishes as R grows.
In the limit, when R tends to infinity, every visible point will be
correctly labelled as such. Larger values of R handle high-curvature
regions of the surface. In practice, however, the input is a sur-
face sampling, and thus the output may contain false positives as
well as false negatives. Katz et al. deal with this problem by using
large R values for dense clouds and smaller R values for sparse
clouds.

In a related paper, Mehra et al. [MTSM10] show that the HPR
operator is very susceptible to noise, and propose a robust variation
which is then used to build a global reconstruction of the surface.

3. Approximate Convex Hull

As mentioned earlier, the HPR operator requires the computation
of the convex hull of the inverted cloud, which takes O(n log n)
time for a cloud with n points in �3. In [KTB07], for instance, the
authors employ the QuickHull [BDH96] algorithm, which computes
the convex hull of points in 3D in O(n log n) time for favourable
inputs, but is quadratic in the worst case. Even the highly optimized
implementation used in the original paper has sluggish performance
(see, for instance, the results for the Happy Buddha model shown
in Table 1) making it unsuitable for dealing with large point clouds.
In fact, as with many convex hull algorithms, QuickHull performs
best when the number of points in the hull is small when compared

with the size of the cloud, which is not to be expected when the
HPR operator is applied to clouds which are samplings of a surface
model.

Clearly, some way of improving the efficiency of convex hull
calculations will greatly benefit the usefulness of the HPR operator.
Taking advantage of the substantial raw power of modern GPU’s
immediately comes to mind. Surprisingly, although implementing
2D algorithms in GPU is relatively straightforward, only more re-
cently have we seen works describing GPU-assisted convex hull
algorithms for 3D clouds [TO12], [SGES12], [GCTH11]. While
significant performance increases have in general been reported, we
have not yet evaluated these approaches in the scope of the problem
at hand.

Another way of improving the speed of the technique is to use an
approximate convex hull algorithm. The fact that the HPR operator
is also approximate reinforces this idea, provided that the errors
introduced by one technique and the other are independent. When
used for rendering, the idea is to apply the HPR operator on a
subsampling of the cloud which has a high probability of containing
convex hull points but is just dense enough for the actual screen
resolution. An additional advantage of this idea is that this kind of
screen-based sampling fits naturally with GPU computing models.

Several approaches for computing approximate convex hulls have
been proposed in the past. The central idea initially described by
Bentley et al. [BPF82] is to obtain a subsampling of the original
set and then compute an exact hull for the smaller set. Most of the
various proposed algorithms concentrate on heuristics for obtaining
this reduced set. The main concern is to reduce the error by choosing
‘good’ candidates, that is, points which are likely to lie on the convex
hull of the set (see [KS95] for a survey).

Intuitively, a point pi ∈ P is in the convex hull if it is an ex-
treme point for some given direction �d. In other words, if q is an
origin point, then (pi − q) · �d is maximum over all points in the
cloud. Kavan et al. [KKZ06] explore this property in an algorithm
that computes an approximate convex hull for a set of points. The
algorithm is divided into three steps:

(1) First, an origin point q inside the hull is selected at cost O(n).
This can be easily done by choosing the centroid of the cloud.

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator 181

Figure 2: Two ways of dividing a sphere into k partitions: (a)
angular grid, and (b) method of Leopardi.

(2) The plane is divided into k equally spaced sectors cen-
tred at q, each covering an angle of 2π

k
. All points in the

cloud are then assigned to the sector that contains them. For
each sector i, establish a direction �di aligned with the bisector
of the sector angle, and choose pi among the points assigned
to the sector such that it maximizes (pi − q) · �di . The idea
is that the selected pi is a good estimate of the point which
is extreme for direction di and, thus, probably a point on the
hull. Clearly, this step can be computed in O(n).

(3) Finally, refine the estimate for each sector i by comparing
each originally selected pi with the points selected for all the
other sectors. If another point pj , j �= i is found which is a
better estimate for direction di , then pi is updated accord-
ingly. Note that this procedure may remove but not add points
to the approximate convex hull. This step takes time O(k2),
since each selected point must be compared with every other
selected point.

While the method is described for two dimensions, it can be
generalized to any number of dimensions. The extension of this al-
gorithm to three dimensions is straightforward although some care
must be taken in order to partition the cloud into k angular sec-
tors. In principle, any kind of spherical tiling scheme can be used
for this purpose. One way for doing it is to project a cube or any
regular polyhedron onto the sphere, subdividing each face a suit-
able amount of times. This has the disadvantage of producing not
quite identical partitions. Another option is to use the algorithm
described by Leopardi [Leo06], which partitions a hypersphere into
any given number of sectors having the same Lebesgue measure—
for example, perimeter in 2D, or area in 3D (see Figure 2b). In our
implementation, however we use a simple angular grid based on
spherical coordinates (Figure 2a), since, unlike the schemes men-
tioned earlier, a grid provides a simple way of visiting neighbouring
partitions. Although this arrangement also produces partitions of
different sizes, we use a small region on the sphere close to the
equator where quadrants have very similar sizes.

The algorithm proposed by Kavan et al. takes O(n + k2) time,
which makes it advantageous over optimal exact algorithms only if
k � √

n log n. Note, however, that point clouds obtained with 3D
scanners only contain points from the surface of the model. If the
model is convex or even if it has relatively few concavities, one
may expect that roughly half of the point cloud may be visible. It

Figure 3: In (a) candidate p2
j is a replacement for both p1

j and
pi , while in (b) p2

j is a replacement for pi but not p1
j ; in this case,

however, pi will be replaced by p1
j .

follows that using Kavan et al.’s algorithm may result in too coarse
a sampling, given that a small enough value of k must be chosen
to make the algorithm suitably fast. One observes, however, that
step (3) can be computed more efficiently by examining a limited
neighbourhood of each sector instead of all k sectors. The idea is
that the best estimate for each sector can be achieved using a scheme
for propagating candidate points. Thus, step (3) can be rewritten as:

(3) Refine the estimate for each sector i by comparing each origi-
nally selected pi with the points pj selected for all neighbour
sectors j ∈ N (i). If any original estimate is changed by this
step, repeat it until no better estimate is found for any sector.

The rationale for this modification is that the selected candidate
point pi for a given sector i with bisector di is more likely to
be replaced by the candidate pj corresponding to direction dj if the
angle between di and dj is small. Moreover, suppose that candidate
p2

j for a sector j 2 which is not an immediate neighbour of sector i

is found to be a replacement for pi . Then there is a sector j 1 which
is a neighbour of i such that (1) p2

j is also a replacement for p1
j , or

(2) p2
j is not a replacement for p1

j , but, in this case, p1
j is a better

replacement for pi (see Figure 3).

The time complexity for the modified step (3) depends on the
number of propagation steps actually performed. The first step
clearly takes O(k) time, but the next steps will only work on sectors
which were changed on the previous steps. In the worst case, all
sectors will have changed at every step, and the process will finish
in k steps, yielding the same O(k2) performance of the original al-
gorithm. Notice, however, that a large number of propagation steps
means that candidate points are assigned to large angular intervals,
causing the hull to have correspondingly large faces. It is reason-
able to assume that this will be a rare occurrence when dealing with
dense point clouds such as those obtained with 3D scanners. More
importantly, we will show that in some cases it is beneficial to limit
the number of propagation steps so that large faces are not formed.

4. HPR-based Rendering of Point Clouds Using CUDA

The algorithm for computing approximate convex hulls described in
the previous is a starting point from which the HPR operator can be
computed efficiently. Since it uses simple data structures which can

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

182 R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator

be traversed simultaneously, they are amenable to implementation
in parallel architectures such as GPU’s. Roughly speaking, if the
work is split evenly among m processors, steps (1) and (2) can be
expected to take O(n/m) time, while the propagation phase should
take O(�k/m) time, where � is the maximum number of propagation
steps allowed.

Two main GPU programming paradigms are prevalent nowadays.
In the first one, shader programming, the programmer stays within
the general graphics pipeline framework, that is, he/she prepares
code pieces called shaders which replace the conventional stages
in the graphics pipeline, still using graphics data structures such as
pixel fragments and vertices. Shader programming must employ a
shading language such as OpenGL Shading Language GLSL, which
extends the OpenGL graphics programming dialect.

On the other hand, general purpose computing on graphics pro-
cessing units (GPGPU) takes a broader view on the process of
building programs which can be run on GPUs, in the sense that they
mostly dispense with graphics pipeline-related structures for code
and data. Currently, OpenCL is the dominating open GPGPU pro-
gramming language, whereas NVidia’s graphics cards may also be
programmed using the CUDA [cud] toolkit. It should also be men-
tioned that the distinctions between these two paradigms are being
somewhat blurred by initiatives such as compute shaders, supported
by OpenGL versions 4.3 onward.

In this section, we discuss a CUDA implementation of the algo-
rithm outlined in the previous section, whereas a shader version is
discussed in the following section.

4.1. Defining the sectors

The first step consists of establishing an appropriate coordinate
system for defining the sectors where the points of the cloud will
be distributed. For this purpose, an enclosing sphere for the cloud is
computed having centre at Ce and radius r . In our implementation,
Ce is the centroid of the cloud and r is the distance from Ce to
the furthest point in the cloud. Then, a coordinate system is built
where the origin is at C, the position of the observer, with the x axis
passing through Ce (see Figure 4).

The sectors are defined by dividing the horizontal and vertical
angles of the viewing frustum regularly in a grid-like manner. The
region of the frustum containing the enclosing sphere will be sym-
metrical, covering an angle �φ given by

�φ = 2 sin−1 r

|C − Ce| . (2)

Using spherical coordinates, the frustum will then correspond to
ranges in ϕ and θ given by

ϕ ∈ [−�φ

2
, +�φ

2
],

θ ∈ [
π

2
− �φ

2
,
π

2
+ �φ

2
]. (3)

In order to produce k sectors, these angular ranges are regularly
sampled

√
k times in each direction. The sectors thus formed will

have a pyramid shape and the directions �di to be minimized will

Figure 4: Coordinate system for defining the sectors. View point C

lies at the origin, with the x axis passing through Ce, the centre of
the enclosing sphere of the point cloud.

be aligned with the ϕ and θ bisectors. Notice that sectors will not
be identical due to the fact that any given angle interval in the ϕ

coordinate will correspond to smaller sections closer to the poles,
that is, for θ near 0 or π . Thus, this particular way of defining
sectors is only adequate when the view point is far from the cloud so
as to yield a relatively narrow frustum. Whereas there are methods
which do not impose this restriction and yet yield more uniform
sectors—see Section 3 for some suggestions, this scheme has the
advantage of making it easy to visit the up to eight neighbours of a
given sector, which is necessary for the candidate propagation step
(see Section 4.3).

This step of the algorithm is implemented by two CUDA ker-
nels which process all points in the cloud. The first kernel com-
putes the centroid Ce, while the second computes r . These two
are implemented as parallel prefix scans [SHZO07] which take
O(n/m + log n) time each, using m processors.

4.2. Computing sector candidate points

Once Ce and r are known, and k is established by some means, the
angular interval �φ can be computed, thus defining the geometry of
all sectors. At this point, another kernel performs a simple parallel
scan of all points in the cloud with the following goals:

(1) Applying an affine transformation to the cloud so as to move the
view point to the origin of the coordinate system and Ce to
some point on the x axis.

(2) Computing the spherical flip of each point, storing it in an array P

of size n.

(3) Assigning a sector number for each point, storing it in an array
SECTOR of size n.

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator 183

The sector number of a point is an integer number between 0
and k − 1 which can be determined by computing its spherical
coordinates and finding the proper angular interval in ϕ and θ where
it lies. For instance, if a point lies in the ith interval in the ϕ direc-
tion and the j th interval in the θ direction, then its sector number
is i

√
k + j . Notice that all computation in this kernel is done inde-

pendently for each point and thus the kernel runs in O(n/m) time.

The direction �di pointing to the centre of each sector must also
be computed by means of a kernel which builds an array of size k

called DIR in O(k/m) time. Once this is done, another kernel is
fired to compute the projection of each spherically flipped point on
its sector central direction. In short, an array called DIST of size n

is computed by a parallel scan of all points such that

DIST[i] = P [i] · DIR[SECTOR[i]]. (4)

Finally, a candidate extreme point for each sector must be com-
puted by examining only the points assigned to the sector. This
requires reordering the array P containing the inverted cloud so that
points assigned to the same sector are contiguous in memory. This
is accomplished by means of a parallel sort operation which uses the
values in SECTOR as keys. Our prototype uses the GPU-optimized
radix sort algorithm described by Merrill and Grimshaw [mer11]
as implemented in the Thrust [HB10] library. Although no explicit
complexity bounds are mentioned by the authors, optimal parallel
sort algorithms are believed to run in O((n log n)/m) time. Once P

is sorted, sector candidate points are computed with a segmented
scan kernel [SHGO11] taking O(n/m + log n) time. The result of
this computation is stored in an array called MAX of size k which
contains the indices of the candidate points.

4.3. Candidate point propagation

In this step, the candidate initially considered as extreme point for a
given sector may be replaced by a candidate assigned to one of the
up to eight sectors sharing an edge or a vertex in the angular grid.
This is a critical phase of the algorithm since it must be repeated a
number of times until no sector candidates are replaced.

Unfortunately, counting the number of candidate replacements is
complicated by the occurrence of empty sectors, that is, sectors for
which no candidates have been estimated in the previous iterations.
Empty sectors can be attributed to two causes, namely, (1) the sector
corresponds to a region outside the object projection, or (2) the
sector is inside the object projection, but no point of the cloud
lies inside it (see Figure 5). Clearly, the propagation process must
ignore sectors in the first case, but not those in the second case. Thus,
the propagation algorithm makes use of an auxiliary array named
EMPTY, of size k such that EMPTY[i] is true if sector i is empty,
and likely to be of type (1). This array is populated along with the
initial candidate points in the previous step. In order to be reasonably
sure that it does not contain empty sectors of type (2), we observe
that empty sectors of this type become more likely as k increases.
In consequence, if k/n is above a given threshold—we use 25% in
our experiments—EMPTY is computed for a coarser angular grid,
that is, using the average occupancy rate calculated for the actual
grid, we linearly estimate the size of the grid for the EMPTY map.
Thus, for instance, if the EMPTY array has k/4 elements, each of its

Figure 5: Sectors lying outside the object projection such as (a)
will have no candidates and need not be visited in the propagation
process. Sectors such as (b) must be visited in the propagation
process, since they are enclosed in the object projection but have
no samples inside the cloud. Sectors such as (c) correspond to a
borderline case.

elements will be false only if no point of the cloud falls on a 2 × 2
sector neighbourhood of the finer grid with k elements.

Each propagation step is computed by a simple parallel scan in
O(k/m) time. A global variable CHANGED is set to true if any
candidate replacement is done on a sector not marked as empty.
Notice that there is no need for using atomic operations to ensure
non-simultaneous write access to that variable, since any access to
CHANGED is enough to guarantee that another propagation step
must be conducted.

Another important consideration is whether a gather or a scatter
strategy is more adequate for this step. In a gather strategy, the thread
examining sector s visits its neighbours looking for a replacement
for its current candidate, whereas in a scatter strategy the candidate
at s is considered as a replacement for each of its neighbours. In the
former approach, each thread may alter a single sector, while in the
latter, concurrent modifications may take place. In our GPU imple-
mentation, for simplicity, only the gather strategy is used. However,
a CPU implementation developed as a means for comparison, uses
a scatter strategy, so that each successive iteration visits only sectors
which had their candidates changed in the previous iteration. This
reduces considerably the number of sectors visited in each step,
especially when many propagation steps are necessary due to a very
high k.

4.4. Partial view-dependent reconstruction

In [KTB07], a ‘quick and dirty’ view-dependent reconstruction of
the visible surface is displayed by rendering not only the vertices
but also the faces (triangles) of the convex hull. In their case, this
can be done at no extra cost since the topology of the hull (triangula-
tion) is always computed by the quickhull algorithm. In our method,
however, the hull is never computed per se, but a triangulation may

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

184 R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator

Figure 6: In (a) the extreme point of each sector lies within the
sector, while in (b) the candidates of sectors 6 and 10 lie within
sector 7. The shaded triangle is generated while visiting sector 5.

still be inferred by visiting the angular grid and generating up to two
triangles for each 2 × 2 sector neighbourhood. Thus, while visiting
sector i, four points may be used to form two triangles, namely, the
points whose indices are MAX[i], MAX[i + 1], MAX[i + √

k],
and MAX[i + √

k + 1] (see Figure 6a). Notice, however, that the
propagation process may have assigned the same candidate to sev-
eral neighbouring sectors. Invalid triangles are trivially eliminated
by requiring all three points of each triangle to be distinct. In
Figure 6(b), for instance, no triangles are generated while visiting
sector 6, while only one triangle is generated for sector 2.

As pointed out by [KTB07], some triangles must be filtered out
since their vertices are not likely to be contiguous in a ‘real’ sur-
face reconstruction. They suggest removing triangles having edges
longer than a certain threshold. We have adopted a similar procedure
in our approach.

5. Shader Implementation

The shader implementation heavily uses the concepts of render-to-
texture and multipasses. We have entirely avoided reading back any
information from the GPU during the many different passes. We
have also avoided extensive use of texture fetches by recomputing
some values in every shader pass, that is instead of storing the sector
directions they are recomputed as needed.

To shorten the description of the following passes, we briefly
describe a common GPGPU technique to use a buffer as input
primitive, hereafter called buffer processing. By mapping a quad
primitive to fit exactly the viewport’s dimensions, the fragment
shader is called once for each buffer pixel. In this way, we simulate
processing each pixel of a 2D buffer in parallel using shaders. When
it is necessary to read and write from the same buffer, we employ
a ping-pong scheme: read from a first buffer and write to a second
one, and invert roles in each subsequent pass.

5.1. Point projection

We project all points to an offscreen buffer of size (
√

k,
√

k) corre-
sponding to the k sectors. Each buffer pixel represents one sector as
illustrated in Figure 7.

Figure 7: Mapping of the sectors into an offscreen-buffer. The buffer
size is 4 × 4 just for illustrative purposes.

In the vertex shader we compute the first two steps described in
Section 4.2, and then force the output position to project the point
to the corresponding sector/fragment. In the fragment shader we
compute the sector’s direction and the distance as in Equation (4). To
keep only the best candidate, depth test is enabled and the fragment
depth value set to (1.0 − DIST). The result is written to two different
buffers, one containing the direction DIR, and the other the original
vertex world coordinates and the vertex ID to facilitate some future
operations.

5.2. Propagation

After the first pass, we have a buffer with k cells with the best candi-
date for each sector. To propagate there are two equivalent strategies:
propagate the best candidate by using a diffusion gather approach;
or use a fixed size kernel to gather neighbouring fragments. The
former works better when a large propagation is needed, as it does
not overload a thread processing the fragment shader.

The buffer is then processed and each sector/fragment collects
information about its neighbours’ directions, recomputes the sector
direction and keeps the best candidates information. We call the set
of buffers with the propagated candidates the visible buffer, as it
contains the best direction for each sector, the corresponding vertex
ID and its original world coordinates.

5.3. Normal computation

To compute a normal direction for each visible point, we process the
visible buffer and sample all neighbours of a fragment. We circulate
the neighbours of the central candidate c0 in a clockwise manner,
as shown in Figure 8(a). When a candidate c1 �= c0 is found, it is
marked. We continue circulating until we find a third candidate c2 �=
c1 �= c0 to form a triangle with the central candidate. At this point we
compute the normal n = (c2 − c0) × (c1 − c0) and set c1 = c2.We
repeat this process until we have completed the circulation checking
all possible triangles . To avoid degenerated triangles a maximum
distance of 3 pixels is permitted to form a triangle during circulation,
as illustrated in Figures 8(b) and (c).

In a second pass, a diffusion process similar to the direction
propagation step is conducted, accumulating all normals belonging
to the same candidate.

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator 185

c

0/8

1/9

2/1034

5

6 7

1/9

2/104

5

6 7 0/8

c
3

1/9

2/10

5

6 7 0/8

c
4 3

(a) (b) (c)

Figure 8: (a) Circulation order to compute the normal in the frag-
ment shader. (b) A valid triangle configuration (0, 3, c) and (c) an
invalid configuration (0, 4, c).

5.4. Point rendering

To render the points we avoid the naive approach of reading back the
visible buffer to collect all visible points after the propagation phase.
Alternatively, we could sample the visible buffer at each fragment,
and check if there is a visible point in its original position. However,
for large screen sizes or k values, it is cheaper to simply reproject all
points and check if the vertex IDs matches the corresponding sector
in the visible buffer. If it is the best candidate, then it is rendered,
otherwise the shader discards the point.

5.5. Screen space surface reconstruction

At this point we have buffers containing the visible points and their
normals. To reconstruct the surface using a splatting technique, it is
necessary to know the size of each point, which is usually defined
by the local density. We can profit from the normal propagation
pass and simultaneously compute a splat size for each visible point.
To achieve this, we add to the visible buffer information about
the original sector coordinates of the projected point. Thus, during
normal propagation, we also propagate the largest distance to the
original sector’s position. We have tested our implementation using
the approach by Marroquim et al. [MKC08], since it can make direct
use of these buffers without further processing.

6. Algorithm Calibration

The original HPR algorithm depends on just one parameter, namely,
R, the radius of the sphere used for the inversion transformation.
The proposed algorithm also depends on k, the size of the angular
grid, and on �, the number of iterations allowed for propagation.

In [KTB07], an optimal value for R is estimated by a process
whereby the cloud is repeatedly rendered from opposite sides with
varying values of R trying to maximize the total number disjoint
visible points. The rationale is that a high number of common visible
points indicates too many false positives (R is too high), whereas
a low number of disjoint visible points indicates too many false
negative (R is too low). It is possible, however, to estimate a rea-
sonable value for R if the point density of the surface for the given
viewpoint is known. Let us consider two front-facing points lying 1
unit distant from the observer and separated by an angle of α (see
Figure 9). Then, a convex hull face spanning the two inverted points
will exactly occlude a point distant d + 1 units from the observer if

Figure 9: Spherical inversion of two points angularly separated by
α and their ability to occlude a point d units farther away.

2R − 1 − d

2R − 1
= cos

α

2
.

Thus, stipulating a small value for d , a lower bound for R may
be computed, given that the angular separation α between two vis-
ible points is known. The same coarse sampling used to obtain
the EMPTY map can be used estimate this information in the way
described below.

Let e be the number of non-empty cells in the EMPTY map and
n be the size of the cloud (n
 e). Then, the problem consists of
estimating what angular grid resolution would lead to a certain ratio
a between non-empty sectors and the total number of sectors s.
This problem is similar to several probability problems known col-
lectively as ‘balls in bins’ [RSM98]. The probability that at least
one of n balls falls in a given bin chosen from s possible bins is
given by

a = 1 − (s − 1)n

sn
,

which, when solved for s gives

s = − 1

(1 − a)
1
n − 1

. (5)

Thus, if the coarse grid EMPTY has e of its m sectors occupied,
then we may infer that a finer grid with k sectors will offer s = ke/m

sectors for occupation. Clearly, we would like to estimate a value
for k which would yield one point per sector. Unfortunately, the
balls and bins analogy does not fit our problem for high values of
a. For instance, a = 1 yields s = 1. Nevertheless, using a = 0.5 we
may estimate the angle separation α as twice the angular size of the
resulting sector.

The method outlined above can also be used to estimate �, the
maximum number of propagation steps needed to cover the sectors
between any two visible points. For doing this, however, we must

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

186 R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator

Figure 10: Example renderings of partial view-dependent reconstructions: (a) Bimba (74 764 pts), (b) Armadillo (172 974 pts), (c) Buddha
(719 560 pts), (d) Happy Buddha (543 652 pts) and (e) Asian Dragon (3 609 455 pts).

guess the total number of visible points (as opposed to the total
number of points in the cloud). It is possible to modify the creation
of the EMPT Y map to perform this estimation. The idea is to
compute for each sector the closest point to the observer and to
consider visible the other points that fall within the sector and are
roughly at the same distance. Alternatively, we may consider, say,
that half of the cloud points are visible and thus overestimate �

somewhat.

7. Results

In order to assess the correctness and usefulness of the techniques
just described, a series of experiments were conducted. The first
batch of experiments aims to assess how well our algorithm fares
with respect to the original HPR algorithm. The second batch of
experiments demonstrate the performance gains obtained by using
GPU-based and conventional (i.e. CPU only) implementations of
our algorithm with respect to an implementation employing a fast
implementation of the well-known QuickHull algorithm [BDH96].

All experiments were conducted on a workstation equipped with
an Intel i7 CPU running at 2.4 GHz and 8GB memory. The graph-
ics board uses an NVidia GTX 470 GPU with 1GB memory. All
software prototypes were written in C++ and OpenGL. Exact con-
vex hulls are computed using the Qhull [qhu] library. The GPGPU
implementation uses CUDA 4.0 and the Thrust [HB10] library.

As a reference, Figure 10 show renderings obtained with our
techniques for all models used in the experiments. Notice that,
although the original models are meshes, only the vertices are used
as input point clouds for the HPR algorithm.

7.1. Accuracy experiments

A fair comparison between the proposed algorithm and the original
HPR method hinges on the choice of the value of R, k and �. In
[KTB07] it is suggested that the best visibility results obtained by
the HPR operator correspond to a value of R that yields the smallest
total number of false positives and false negatives. For instance,
Figure 11(a) shows a pose of the Armadillo model obtained with the

exact HPR method for R = 7400, which yields the lowest error with
respect to the real visibility (obtained with the mesh model), namely
6227 false negatives, 2808 false positives and 58037 correct points,
that is, 15%. Our approximate method with k = 4 × 106 for the same
R yields an error of 16% (see Figure 11b), with 7434 false negatives,
2073 false positives and 56 830 correct points. On the other hand,
using the value R = 5400 as estimated using the technique described
in Section 6 yields the results shown in Figures 11(c) and (d) with
errors 16% and 18% for the exact and approximate HPR algorithms,
respectively. Arguably, the results for lower R look nicer than those
for higher R. This is due to the fact that some false positives appear
as distracting ‘holes’ in the surface.

A better understanding of the strengths and weaknesses of both
algorithms can be obtained by examining the differences between
the results shown in Figures 11(c) and (d). In Figure 12(a), red dots
and blue dots are points considered visible by the exact algorithm
but not by the approximate algorithm and vice versa. Thus, we
observe that our approach does a better job in the areas around the
snout and the hand fingers. This is due to the fact that by using a
small number of propagation steps avoids eliminating visible points
which are farther away from the observer. On the other hand, by
using an angular grid with a fixed resolution, many visible points
near the silhouette are missed. This is confirmed by Figure 12(b)
which shows the false positives (blue) and false negatives (red) for
Figure 11(d).

An important property of the HPR operator is that it tends to
produce better results for denser point clouds. Thus, while the op-
erator is able to produce detailed renderings of point clouds with
millions of points, computing an exact convex hull with millions of
vertices is costly both in time and memory. Our method based on
approximate convex hulls, however, scales well for dense clouds.
The reason for this is that it uses an angular grid for obtaining a
subsampling of the cloud which can be tuned for the desired screen
resolution and viewing angle.

As an example, Figure 13 shows three renderings of the Buddha
model composed of 1.5 million points obtained with the proposed
algorithm using low, medium and high-density angular grids. The
last picture is a rendering of the same pose with the exact algorithm.
Visual inspection shows little, if any, difference between the result of

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator 187

Figure 11: Panels (a) and (b) show a pose of the Armadillo model rendered for optimal R with the exact and the approximate algorithm,
while (c) and (d) show corresponding results for an automatically estimated R. Note: these renderings use per-face (flat) normals so as to
highlight individual faces.

Figure 12: Error comparisons for renderings shown in Fig-
ures 11(c) and (d). (a) shows how the algorithms fail to detect
points which are truly visible: red dots are points which considered
visible only by the exact algorithm, while the blue dots are points
considered visible only by the approximate algorithm. (b) shows
visibility errors solely for the approximate algorithm: red points are
false negatives while blue points are false positives.

our algorithm with high resolution and the exact algorithm, despite
the fact that the former detects roughly 200 000 visible points versus
240 000 for the latter. As with the Armadillo experiment discussed
above, most points considered visible by the exact but not by the
approximate algorithm are concentrated on the silhouette, where
they have little visual importance.

7.2. Performance experiments

A natural question for the proposed method is how well it compares
performance-wise with the exact algorithm. As demonstrated with
the accuracy experiments shown in Section 7.1, however, it is not
possible to obtain exactly the same results with both algorithms
since this would require an angular grid of almost infinite size. For
this reason, in the following experiments we are only interested in
comparing the performance of the various implementations of the
approximate algorithm. Thus, in Table 1, the experiments with the
exact algorithm show a number of visible points which are up to 20%
higher than the corresponding experiments with the approximate
algorithm, in spite of producing no significant visual differences.
The experiments used the same point clouds used in the accuracy
experiments, with k and R estimated using the calibration method
discussed in Section 6.

Note that in Table 1 for the approximate HPR we distinguish
the performances of the visibility algorithm implementations from
those of the partial surface reconstruction (points vs. faces), since
our approach makes it possible to classify a point of the cloud as
visible or invisible without ever computing the convex hull topology,
unlike the exact HPR algorithm. In general, we observe that both
GPU implementations have roughly the same performance, which
is from three to eight times better than the CPU implementation,
which, nevertheless, is quite practical for small to medium-sized
clouds, especially if a lower value for k is used.

Clearly, the speed of the method is inversely proportional to the
size of the angular grid as given by parameter k. As k increases,
more visible points are detected, at a cost of increased processing
time. A crucial question then is how dense a grid should be used
in order to produce roughly the same number of visible points as
the exact algorithm. The chart shown in Figure 14 plots the number
of visible points as a function of k for the Happy Buddha model,

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

188 R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator

Figure 13: (a)–(c) show a pose of the Buddha model rendered with the approximate HPR algorithm for k equal to 40K, 100K and 10M,
respectively, while (d) shows the result of the exact HPR. Note: these renderings use per-face (flat) normals so as to highlight individual faces.

Figure 14: Number of visible points as a function of k for the Happy
Buddha model.

which contains 543 652 points. For the particular pose used in
the experiment, the maximum number of visible points is roughly
135 000, reached for k near 4 000 000 which means that increasing k

above that value is ineffectual. In practice, one might either establish
a value for k as small multiple of the total number of points in the
cloud, or probe for a ‘good enough’ value by increasing k until the
number of visible points levels off.

8. Conclusion

The algorithm for computing approximate convex hulls as described
in this paper can be viewed as a practical alternative for several
applications where the hull is used for estimates of volume, area or
other integral properties. In particular, we have shown that it can
be used for computing the visibility of point clouds as per the HPR
operator introduced by Katz et al.

The image-based techniques described for implementing the HPR
algorithm have as a main advantage the fact that it can trade-off
accuracy for speed. Additionally, they are very amenable to par-

allelization as our GPU-based implementations demonstrate. It is
important to notice that the algorithm needs to project all points
whenever the view—or the model—changes. Thus, model inspec-
tion can easily be implemented in such a way that a coarse rendering
is shown when the user is changing viewing parameters rapidly, but
a fine rendering is shown when the interaction ceases.

When used in high-quality mode, the results obtained are arguably
indistinguishable from those obtained with the exact HPR algorithm.
In fact, in some cases, as with the example shown in Figure 11, the
visual quality of the renderings look even nicer.

The practical value of the proposed technique is enhanced by
being able to estimate the key parameters of the algorithm using
a simple pre-sampling of the point cloud. It should be mentioned,
however, that these estimates work better with more uniformly sam-
pled surfaces.

One important limitation of the proposed technique is the fact
that it may use up a lot of memory for high values of k. A possible
solution for this shortcoming is to use the EMPTY array to imple-
ment a more efficient memory management where only non-empty
sectors need to be stored and processed.

Acknowledgements

The models Bimba, Happy Buddha, Armadillo and Asian Dragon
are courtesy of the Stanford 3D Scanning Repository. The model
Buddha is courtesy of the AIM@SHAPE Shape Repository.

References

[BDH96] BARBER C. B., DOBKIN D. P., HUHDANPAA H.: The quickhull
algorithm for convex hulls. ACM Transactions on Mathematical
Software 22, 4 (1996), 469–483.

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

R. Machado e Silva et al. / Image Space Rendering of Point Clouds Using the HPR Operator 189

[BPF82] BENTLEY J. L., PREPARATA F. P., FAUST M. G.: Approximation
algorithms for convex hulls. Communications of the ACM 25, 1
(1982), 64–68.

[CL96] CURLESS B., LEVOY M.: A volumetric method for building
complex models from range images. In SIGGRAPH ’96: Pro-
ceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques (1996), pp. 303–312.

[cud] CUDA. http://www.nvidia.com/object/cuda_home_new.html.

[GCTH11] GAO M., CAO T.-T., TAN T.-S., HUANG Z.: ghull: a three-
dimensional convex hull algorithm for graphics hardware. In
Symposium on Interactive 3D Graphics and Games (San Fran-
cisco, CA, USA, 2011), I3D ’ 11, pp. 204–204.

[GP07] GROSS M., PFISTER H. : Point Based Graphics. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, 2007.

[HB10] HOBEROCK J., BELL N.: Thrust: A parallel template li-
brary (2010). http://code.google.com/p/thrust. Accessed Decem-
ber 2012.

[HDD*92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD J.,
STUETZLE W.: Surface reconstruction from unorganized points.
In SIGGRAPH ’92: Proceedings of the 19th Annual Confer-
ence on Computer Graphics and Interactive Techniques (1992),
pp. 71–78.

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface re-
construction. In SGP ’06: Proceedings of the Fourth Eurograph-
ics Symposium on Geometry Processing (Aire-la-Ville, Switzer-
land, 2006), Eurographics Association, pp. 61–70.

[KKZ06] KAVAN L., KOLINGEROVA I., ZARA J.: Fast approximation
of convex hull. In Proceedings of the 2nd IASTED International
Conference on Advances in Computer Science and Technology
(2006), pp. 101–104.

[KS95] KIM C. E., STOJMENOVIĆ I.: Sequential and parallel approx-
imate convex hull algorithms. Computers and Artificial Intelli-
gence 14, 6 (1995), 597–610.

[KTB07] KATZ S., TAL A., BASRI R.: Direct visibility of point sets. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 Papers (2007), p. 24.

[Leo06] LEOPARDI P., : A partition of the unit sphere into regions
of equal area and small diameter. Electronic Transactions on
Numerical Analysis 25 (2006), 309–327.

[mer11] MERRILL D., GRIMSHAW A.: High performance and scalable
radix sorting: A case study of implementing dynamic parallelism
for GPU computing. Parallel Processing Letters 21, 02 (2011),
pp. 245–272.

[MKC08] MARROQUIM R., KRAUS M., CAVALCANTI P. R.: Efficient
image reconstruction for point-based and line-based rendering.
Computers & Graphics 32, 2 (2008), 189–203.

[MTSM10] MEHRA R., TRIPATHI P., SHEFFER A., MITRA N. J.: Vis-
ibility of noisy point cloud data. Computers & Graphics 34, 3
(2010), 219–230.

[qhu] Qhull code for convex hull, Delaunay triangulation,
Voronoi diagram, and halfspace intersection about a point.
http://www.qhull.org. Accessed December 2012.

[RSM98] RAAB M., STEGER A., MÜNCHEN T. U.: Balls into bins—
a simple and tight analysis. In RANDOM’98, LNCS 1518, M.
Luby, J. Rolim, and M. Serna (Eds.) (Springer-Verlag, Berlin,
Heidelberg, 1998), pp. 159–170.

[SEO12] SILVA R. M., ESPERANCA C., OLIVEIRA A.: Efficient hpr-
based rendering of point clouds. In Proceedings of the 2012 25th
SIBGRAPI Conference on Graphics, Patterns and Images (2012),
pp. 126–133.

[SGES12] STEIN A., GEVA E., EL-SANA J.: Cudahull: Fast parallel 3d
convex hull on the GPU. Computers & Graphics 36, 4 (2012),
265–271.

[SHGO11] SENGUPTA S., HARRIS M., GARLAND M., OWENS J. D.: Effi-
cient parallel scan algorithms for many-core GPUs. In Scientific
Computing with Multicore and Accelerators. J. Kurzak, D. A.
Bader, J. Dongarra (Eds.), (Taylor & Francis, Boca Raton, FL,
January 2011), ch. 19, pp. 413–442.

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS J. D.: Scan
primitives for GPU computing. In Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hard-
ware (2007), pp. 97–106.

[SJ00] SCHAUFLER G., JENSEN H. W.: Ray tracing point sampled
geometry. In Proceedings of the Eurographics Workshop on Ren-
dering Techniques 2000 (2000), pp. 319–328.

[SP04] SAINZ M., PAJAROLA R.: Point-based rendering techniques.
Computers & Graphics 28, 6 (2004), 869–879.

[TC10] TAVARES D., COMBA J.: Efficient approximate visibility
of point sets on the GPU. In 23rd SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), (September 2010),
pp. 239–246.

[TL94] TURK G., LEVOY M.: Zippered polygon meshes from range
images. In SIGGRAPH ’94: Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques
(1994), pp. 311–318.

[TO12] TZENG S., OWENS J. D.: Finding convex hulls using quick-
hull on the gpu. CoRR abs/1201.2936 (2012). http://arxiv.
org/abs/1201.2936. Accessed December 2012.

[WS03] WAND M., STRASSER W.: Multi-resolution point-sample ray-
tracing. In Graphics Interface 2003 Conference Proceedings
(2003).

[WS05] WALD I., SEIDEL H.-P.: Interactive Ray Tracing of Point
Based Models. In Proceedings of 2005 Symposium on Point
Based Graphics (2005).

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Sur-
face splatting. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques (2001), pp. 371–
378.

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.

