
Exploiting Space and Time Coherence in
Grid-based Sorting

Rubens Carlos Silva Oliveira†, Claudio Esperança†, Antonio Oliveira†
†COPPE - Federal University of Rio de Janeiro

Email: rubcarso@ibest.com.br, esperanc@cos.ufrj.br, oliveira@cos.ufrj.br

Abstract—In recent years, many approaches for real-time
simulation of physical phenomena using particles have been
proposed. Many of these use 3D grids for representing spatial
distributions and employ a collision detection technique where
particles must be sorted with respect to the cells they occupy. In
this paper we propose several techniques that make it possible to
explore spatio-temporal coherence in order to reduce the work
needed to produce a correct ordering and thus accelerate the
collision detection phase of the simulation. Sequential and GPU-
based implementations are discussed, and experimental results
are presented. Although devised with particle-based simulations
in mind, the proposed techniques have a broader scope, requiring
only some means of establishing subsequences of the input which
did not change from one frame to the next.

Keywords-GPU programming; sorting; particle based physics

I. INTRODUCTION

The process of computing the interference between multiple

objects moving through space is crucial in many applications,

especially in simulations, physically based or not. The problem

has worst case complexity O(n2), where n is the number of

objects, but can be even harder for objects with non-trivial

geometries. An approach that has been gaining popularity in

the last few years is to approximate objects by collections of

particles, typically represented by small spheres, leading thus

to a problem of detecting the interference between all pairs

of particles. The main advantages of this idea are that sphere-

sphere intersection tests are cheap, and spatial decomposition

schemes can be effectively applied to reduce the search to

small spatial neighborhoods.
In this context, when considering an implementation on par-

allel architectures such as GPUs, the choice of regular 3D grids

for organizing space is more appealing than hierarchical data

structures. This is corroborated by several physical simulation

schemes reported recently, e.g. [1], [2], [3], [4]. The overall

idea of such schemes is that the neighborhood of a particle can

be inferred by looking at the grid cells it occupies, and thus,

interfering particles may be found by inspecting those cells

or other neighboring cells. Thus, the approach relies on being

able to perform two simple operations, namely, (1) given a

particle, computing the cells it intersects, and (2) given a cell

address, computing all particles intersecting it. Early schemes

allowed for only a few particles being assigned to any one

given cell [1] so as to perform operation (2) efficiently. This

restriction was lifted from more modern schemes by simply

sorting particles by their cell ids, so that all particles occupying

a given cell are contiguous in the sorted array.

In this scenario, the sorting algorithm assumes a crucial

importance, especially if we consider that, in many typical

simulations, we may expect relatively few changes in the

mapping between particles and the grid cells they occupy.

In other words, since the input changes little from frame to

frame, it seems logical to assume that algorithms that are able

to explore time coherence will fare better than those which

oblivious to this fact. It is important to note that, unlike in

other applications, in this case it is possible to tell exactly

what parts of the input have changed from one frame to the

next, which makes it possible to pinpoint what parts must

be re-sorted. This, in fact, is the only restriction for using

the techniques discussed in this paper, which we feel have a

broader scope than the particular application focused here.

In this paper, we propose several ideas that can be com-

bined with the traditional implementations found in CPU- and

GPU-based libraries so as to obtain significant performance

enhancement in particle-based simulations. These ideas are

explained in detail and the results of several experiments

conducted in different system architectures are presented.

II. RELATED WORK

Collision detection is a heavily studied topic in Computer

Graphics, with proposed solutions that vary widely depending

on issues like (1) the types of objects being considered,

e.g., rigid, deformable, fluids, etc, (2) whether discrete or

continuous-time detection is desired, and (3) the types of

computer architectures available, e.g., CPU-only, GPUs or

other parallel architectures. The reader is referred to one of

the many surveys of the field, such as [5], [6], [7].

In this paper, we are mostly interested in a particular

technique using spatial grids. In [8], a 3D grid mapped on

a texture is used to record up to four particle ids in a fully

GPU-based simulation of a large number of rigid bodies. In

[9], this idea is extended with the use of a spatial hash code

that enables assigning more than one particle to any given

spatial grid cell. Particles belonging to the same cell are then

clustered together in an array by using sorting them by hash

code. This technique is explained in more detail in SectionIII.

Sorting algorithms have also been extensively researched

since the early days of Computer Science. Perhaps the most

commonly used sorting algorithm present in general-purpose

libraries is the Quicksort [10], usually implemented with

modifications proposed by Sedgewick [11]. Although in the

worst case it may make O(n2) comparisons, this is rare, and

2013 XXVI Conference on Graphics, Patterns and Images

1530-1834/13 $26.00 © 2013 IEEE

DOI 10.1109/SIBGRAPI.2013.17

55

in practice it tends to perform faster than other O(n log n)
algorithms due to the localized way it accesses memory. Also

noteworthy are the facts that the Quicksort algorithm is in-

place and non-stable.

Since we are interested in the problem for nearly sorted

inputs, it is worth mentioning that Quicksort does not fare

specially well in that case. The extremely informative page by

David R. Martin [12] deems the Insertion Sort, an O(n2) algo-
rithm, as the clear winner among the best known algorithms.

Among the algorithms with O(n log n) time complexity, two

adaptive approaches are worth mentioning. The first is Timsort,
an algorithm devised in 2002 by Tim Peters [13] for use in the

Python programming language. It finds sorted subsets of the

input data and uses this information to sort the remainder more

efficiently. The second is the algorithm known as Smoothsort
[14], proposed as a variation of the Heapsort, is known to work

well with nearly sorted inputs. It is a fairly complex algorithm

which degrades smoothly (hence the name) from O(n) in the

best case, when the input is already sorted, to O(n log n) in

the worst case. A more thorough analysis of adaptive sorting

algorithms can also be found in [15].

When considering parallel architectures in general, and

GPU-based programming libraries in particular, two other

algorithms are more commonly used, namely the Bitonic Sort
and the Radix Sort. In our tests, we used implementations of

these algorithms included in NVidia’s SDK [16].

The Bitonic Sort [17] consists of building short bitonic sub-

sequences (up to 4 elements initially) and then progressively

merging them together. A bitonic sequence is a concatenation

of two subsequences, one monotonically increasing and an-

other monotonically decreasing. It runs in O(n log2 n) time,

but is very well-suited to parallel architectures since the pattern

of comparisons does not depend on the way input data is layed

out in memory.

Radix Sort is a sorting strategy which does not use com-

parison, but rather, groups keys based on the values of the

individual digits in the same position. The idea is credited to

Herman Hollerith who proposed its use in tabulating machines

and to Harold H. Seward, who first proposed it formally as a

computer algorithm in 1954. The algorithm is not restricted

to integer keys, but can be used for any data that can be

encoded positionally. Two main variants are recognized, the

MSD (Most Significant Digit) variant examines digits in

lexicographic order, being most suitable for sorting character

strings. Conversely, the LSD (Least Significand Digit) variant

examines digits from right to left, being suited for sorting

integer numbers. In the experiments described in this paper,

the Radix Sort follows ideas outlined in [18], an LSD variant

which uses 4 bits digits.

III. COLLISION DETECTION USING SPATIAL GRIDS

This Section describes succinctly the scheme for particle

collision detection proposed in [9] which will be used in

the experiments for empirical validation of the techniques

introduced in Section IV.

The scheme takes place in a world space delimited by an

axis-aligned parallelepiped divided into a tridimensional grid

of cubical cells. The size of the grid is selected in such a way

as to guarantee that any given particle (a sphere, rather) does

not intersect more than eight cells of a 2×2×2 neighborhood,

i.e., the side of each cell is not smaller than twice the radius of

the biggest particle. Let nx, ny and nz be the number of cells

in each dimension. Then, a given particle P is assigned to the

cell which contains its center, say, cell with grid coordinates

(ix, iy, iz), which can be mapped into a single integer key in

range [0, nxnynz − 1] through a hash function such as

hash(ix, iy, iz) = ix + nx(iy + nyiz).

Once particles are assigned to cells, the array of particles is

then sorted with respect to their hashed keys, so that particles

assigned to the same cell are contiguous. The sorted array is

then scanned to determine the ranges of positions that hold

particles with the same key. Let F (h) and L(h) be the first

and last indices of the sorted array that hold particles hashed

to grid position h, then these two values are stored in an array

at position h so that they can be accessed in constant time. The

process of building the required data structures is illustrated

in Algorithm 1 Thus, a particle assigned to a given cell must

Algorithm 1 Build data structures for grid-based collision

detection
Input: P array with the positions of the n particles

Input: nx, ny, nz the dimensions of the grid

/* Build H */

H ← an array with n positions

for i = 0→ n− 1 do
ix, iy, iz ← cell coordinates of P [i]
h← hash(ix, iy, iz)
H[i]← (h, i)

end for
SORT H so that H[i].h ≤ H[i+ 1].h, ∀i
/* Build F ,L */

F,L← arrays with nxnynz positions all set to −1
h← Pair[0].h
F (h), L(h)← 0, 0
for i = 1→ n− 1 do

if h = H[i].h then
L[h]← i

else
F (h), L(h)← i, i
h← H[i].h

end if
end for

be tested for intersection with particles assigned either to the

same cell or to one of the immediate neighbor cells, i.e, in a

3× 3× 3 = 27-cell neighborhood.

IV. OPTIMIZED PARTICLE SORTING IN CPU

Two main strategies are discussed in this section with

respect to the optimization of the sort phase of grid-based

56

schemes. The first one consists of using adaptive sort algo-

rithms, i.e., algorithms which perform better with nearly sorted

collections. The second strategy consists of pre-conditioning

the input of non-adaptive sort algorithms by splitting it into

ordered and non-ordered subsequences, sorting the latter and

merging it into the former.

A. Using adaptive sorters

An examination of Algorithm 1 reveals that the input

collection submitted to the sort algorithm is manufactured

from scratch at each iteration. Clearly, then, the first required

modification is to apply the sort algorithm to an array which

does not change overmuch from one frame to the next. This

can be achieved by using another level of indirection when

referencing the H array. The idea is to define another array,

say I , which will contain indices to array H . At the beginning

of the simulation I is initialized so that I[i] = i. At each

frame, array I is sorted so that H[I[i]].h ≤ H[I[i+1]].h, for
0 ≤ i < n − 1. In fact, since H is never reordered, there is

no need to use the .i field at all, so that H merely stores hash

values. Once I is sorted at the end of one frame it can be used

again as a good initial guess for sorting H for the next frame.

Algorithm 2 reflects the proposed changes.

Algorithm 2 Revised version of Algorithm 1 using nearly

sorted arrays

Input: P array with the positions of the n particles

Input: I array with a permutation of {0..n−1} from previous

frame

Input: nx, ny, nz the dimensions of the grid

/* Build H */

H ← an array with n positions

for i = 0→ n− 1 do
ix, iy, iz ← cell coordinates of P [i]
H[i]← hash(ix, iy, iz)

end for
SORT I so that H[I[i]] ≤ H[I[i+ 1]], ∀i
/* Build F ,L */

F,L← arrays with nxnynz positions all set to −1
h← H[I[0]]
F (h), L(h)← 0, 0
for i = 1→ n− 1 do

if h = H[I[i]] then
L[h]← i

else
F (h), L(h)← i, i
h← H[I[i]]

end if
end for

B. Split and Merge

Given that the best-performing sort algorithms are not

adaptive, another strategy for taking advantage of nearly sorted

inputs is to split it into two collections: a sequence which

is known to be already sorted and another, hopefully much

smaller, which must be sorted from scratch. Unlike in other

applications, the use of a grid provides a simple way to obtain

a sorted subset of the input, namely, by selecting all particles

which have not crossed a cell boundary from one frame to the

next. Thus, we propose a modification of Algorithm 2, where

array I is first split into two subsequences, both stored into

an auxiliary array S: the sorted subsequence is placed at the

beginning of the array, while the indices of particles which

moved to another cell are placed at the end of the array. The

unordered subsequence is then sorted and, finally, both sorted

subsequences can now be merged back into array I . This idea

is shown in a more formal way in Algorithm 3.

Algorithm 3 Modification of Algorithm 2 using a Split-Merge

strategy

Input: P array with the positions of the n particles

Input: I array with a permutation of {0..n−1} from previous

frame

Input: H array with hash values from the previous frame

Input: nx, ny, nz the dimensions of the grid

/* Rebuild H and I – Split Phase */

S ← array with n positions

m← 0
for j = 0→ n− 1 do
i← I[j]
ix, iy, iz ← cell coordinates of P [i]
h← hash(ix, iy, iz)
if h = H[i] then

/* Particle in the same cell */

S[m]← i
m← m+ 1

else
/* Particle moved: store at the end of S */

S[n− 1− j +m]← i
H[i]← h

end if
end for
/* Merge Phase */

SORT S[i] for i ∈ {m..n−1} so that H[S[i]] ≤ H[S[i+1]]
MERGE S[0..m− 1] and S[m..n− 1] into I
/* Build F ,L */

... identical to Algorithm 2 ...

V. GPU SPLIT AND MERGE

The Split and Merge strategy as outlined in Algorithm 3

provides a way of leveraging the performance of the two

most common GPU-based sort implementations, namely, the

Bitonic and Radix sort algorithms, onto nearly sorted inputs.

This, however, depends on devising parallel implementations

of the split and merge operations. Fortunately, both operations

have been the subject of intense research since the populariza-

tion of GPUs. In particular, the seminal work of Blelloch [19]

describes several parallel primitive operations which can be

used to implement a wide variety of algorithms. In fact, some

57

I = 5 7 3 1 4 2 7 2

Changed = F F F F T T F T

1st scan = 0 1 2 3 4 4 4 5

2nd scan = 4 4 4 4 5 6 6 7

S = 5 7 3 1 7 4 2 2

Fig. 1. Example of the parallel split operation of I into S (adapted from
[20].

libraries already contain implementations of parallel primitives

such as scan and prefix scans.
For the experiments in this paper we have developed two

GPU implementations of the Split and Merge strategy, which

are discussed below. Both use the same implementation for

the Split operation, but differ on the Merge phase.

A. GPU implementation 1

The Split operation was implemented according to the

approach proposed by Blelloch [19], which in turn is the

direct application of two scan operations plus one parallel

permutation operation. In a nutshell, in the first scan, the

algorithm computes an array containing an enumeration from

0 to m− 1 for the unchanged elements. An enumeration is an

array with the same size as the input array which is filled in

parallel with non-decreasing values according to some rule.

In our case, the rule is equivalent to setting a variable to

0, scanning the array I from left to right and incrementing

the variable each time an unchanged element is found. The

second scan produces an enumeration from m to n− 1 using

a back scan of the changed elements. This is equivalent to

the setting a variable to n − 1 and scanning I from right to

left, decrementing the variable each time a changed element

is found. Once this is accomplished, array S can be filled

with the sought permutation of I by using either the first or

the second enumeration as indices for the destination array.

Figure 1 illustrates this procedure applied on an example.

The Merge operation was implemented according to the

approach described in set of lecture notes by Ottmann [21],

which is very similar to the parallel merge algorithm described

later by Satish et al. [18]. In essence, given two sorted

subsequences A and B, the algorithm consists of computing

the rank of each element in the sorted sequence C. For an

element ai ∈ A, its rank in C, written rank(ai, C), is given by

i+ rank(ai, B), where rank(ai, B) is the number of elements

in B smaller than ai. This operation may be computed by

performing a binary search for each element ai in parallel.

Clearly, the same idea applies to finding the rank of elements

of B in A, i.e., rank(bi, A). If the size of each subsequence is

relatively small, this approach is enough to obtain the desired

merged sequence. For typical inputs, however, this does not

scale well. The solution then is to split the problem into several

small independent subproblems in the following way:

1) Split B into subsequences of no more than m elements,

say.

2) For each subsequence Bi of B, find (in parallel) the rank

of its last element Bi,m in A and call it rank(Bi,m, A).

3) Define a subsequence Ai as the elements of A at indices

ranging from rank(Bi−1,m, A) to rank(Bi,m, A).
4) The subproblems which consist of merging Ai and Bi

are independent and may be performed in parallel.

B. GPU implementation 2

The second GPU implementation uses a somewhat different

way of obtaining the final sorted sequence. In particular,

after the splitting phase, the subsequence corresponding to the

particles moved to another cell is not sorted before merging.

Rather, the sorting occurs after the merge. Another salient

feature of this implementation is the use of atomic operations,

i.e., instructions that ensure exclusive access to a resource,

such as memory. Thus, concurrent accesses to the resource

are serialized with no pre-established priority.

The approachcan be summarized as follows.

1) After the Split phase, let A refer to the already sorted

portion of the split array and B refer to the unsorted

portion. In the terminology used in Algorithm 3, these

would be S[0..m − 1] and S[m..n − 1], respectively.

For convenience, we assume that B is an array with

k = n−m elements.

2) Define an array C with m + 1 positions. An element

C[i] will contain the number of elements of B that will

be inserted in the sorted array between elements A[i−1]
and A[i]. Notice, in particular, that C[0] will contain the

number of elements of B that are smaller than A[0], and
C[m] will contain the number of elements of B greater

than A[m− 1].
3) Define an array R with k positions. The idea is to set

R[j] to the number of elements of A which are smaller

than B[j], i.e., at the end, R[j] = rank(B[j], A) for

0 ≤ j < k. Thus, in the sorted array, B[j] should appear

before A[R[j]] and after A[R[j]− 1].
4) Define an array D with k positions. Each element D[j]

will contain the order of insertion of B[j] among all

elements of B to be inserted between A[R[j] − 1] and
A[R[j]].

5) In order to compute C, B and R, elements of B
are examined in parallel. For a given B[j], R[j] is

computed using binary search, and arrays C and D are

updated using atomic operations. Figure 2(a) illustrates

this portion of the algorithm for a sample input.

6) The final positions of each element of A are stored in an

array E using a parallel sum scan of C. In other words,

A[i] is to be copied to the sorted array S at position

E[i] = i+
∑i−1

j=0 C[j].
7) Move elements of A and B to the result array S. Notice

that, at this point, elements of A are indeed at their

correct positions in S, while elements of B may not be.

Figure 2(b) shows the result array after this step of the

algorithm.

8) In order to obtain the final result, all elements of B
which in S fell between two consecutive elements of

A must be sorted. In other words, ranges of elements

between S[E[i]] and S[E[i + 1]] must be sorted. This

58

(a)

(b)

(c)

Fig. 2. An example run of the Parallel Merge described in Section V-B:
(a) Original input and arrays R, C and D. (b) After elements of A and B
have been copied to the output. (c) After subranges of the output containing
elements of B have been sorted.

can be accomplished using a simple sequential sorting

algorithm, given that such ranges must have relatively

few elements. In our implementation we used Insertion

Sort for this task. The final array S is shown in Figure

2(c).

The rationale that guided the development of this algorithm

is that each subset of elements of B inserted between any two

consecutive elements of A should be small if B, as a whole

is small. Moreover, the problems of sorting these subsets are

independent, and thus can be sorted by a separate thread in

parallel. It stands to reason, then, that the overall time spent

for sorting all subsets, being proportional to the size of the

largest subset, should be relatively small even if an inefficient

algorithm is used in each thread.

VI. EXPERIMENTS AND RESULTS

Several experiments were conducted to try to assess the

usefulness of the described techniques either by themselves

or in the context of particle simulation applications. In the

System A System B
System type Desktop Laptop

CPU AMD Phenom II X4 940 Intel i7-2630QM
CPU Clock 3000MHz 1995MHz
CPU cores 4 8

Main memory 4GB 8GB
GPU ATI Radeon 5870 NVidia GeForce GT540M

TABLE I
TECHNICAL CHARACTERISTICS OF THE SYSTEMS USED IN THE

EXPERIMENTS.

former case, tests consisted of measuring the relative speeds

of the algorithms as the amount of “sortedness” of the input

change. In the latter case, tests try to measure the influence of

the various algorithms in two particle simulation applications

developed for this purpose.

All implementations were coded by the authors using C++

and OpenCL. Two computer systems were used for all tests,

with technical characteristics as shown in Table I.

A. Stand alone speedup tests

The first batch of tests tried to establish how well traditional

sorting algorithms fare with respect to each other and also with

respect to the Split-Merge approach described in Section IV-B.

All implementations are sequential (CPU only). The tests were

conducted on System A for a collection of 256 thousand

integer numbers. Figure 3 shows the results of sorting inputs

with varying degrees of sortedness. For instance, an input with

10% modified values was obtained by scrambling 10% of an

otherwise sorted array.

An inspection of Figure 3 suggests that among the tra-

ditional algorithms, QuickSort fares best, although it is not

considered an adaptive algorithm, i.e., its asymptotic time

complexity is not affected by how well the input is sorted in the

first place. Is should be mentioned that many implementations

of QuickSort use the first element of each subsequence as

a partitioning pivot, which would impact its performance

for nearly sorted inputs. Our implementation follows the

recommendations of Sedgewick [11], using a randomized pivot

element and using Insertion Sort for small subsequences.

The TimSort algorithm also fares relatively well and, being

adaptive, should beat QuickSort for larger inputs, at least

for inputs with a very small amount of modified elements.

The SmoothSort algorithm, although elegant and with nice

theoretic properties, is fairly complex to implement, exhibiting

a poor performance in practice even for nearly 100% sorted

inputs.

The Split-Merge strategy is the clear winner in this test.

Since it uses the QuickSort algorithm to sort only the modified

portion of the array, it incurs in only a small overhead for

performing the splitting and merging operations, which are

O(n). The cost of this overhead is only made to bear when

the input array is fairly well scrambled.

The second batch of tests benchmarked GPU sorting strate-

gies, contrasting the performance of one CPU and two GPU

implementations the Split-Merge strategy described in Sec-

tions IV-B, V-A and V-B with those of two standard GPU sort

59

Fig. 3. Comparison of time taken by Algorithm 2 to reorder a nearly sorted
collection of 256k integers using various Sort strategies as a function of the
percentage of modified elements.

algorithms, i.e., Radix Sort and Bitonic Sort. In order to ease

the comparison, we use the concept of speedup, which is the

relative improvement of an algorithm of interest with respect

to a reference algorithm. In particular, all charts for these tests

use the performance of either the Radix or the Bitonic Sort as

a reference, depending on which is faster. Thus, we define the

speedup for an algorithm “X” over the reference algorithm as

speedup(X) ≡ min(time(Bitonic), time(Radix))

time(X)
.

Figures 7 and 8 show speedup plots of of tests conducted

in systems A and B, respectively. Due to the limited available

space, only four test scenarios are shown for each system,

corresponding to the use of keys with 20 and 32 bits for input

batches of 64k and 1024k elements. Shorter keys are suitable

for coarser spatial grids whereas longer keys encode hashes

for finer grids. The different key lengths are relevant for this

kind of tests because they influence the performance of the

Radix Sort. For instance, 20-bit keys require 20/4 = 5 steps,

whereas 32-bit keys require 32/4 = 8 steps. This is reflected

in the results where the reference algorithm for all scenarios

was the Radix Sort, except in the case of 32 bit keys and 64k

elements, where that algorithm is outperformed by the Bitonic

Sort. It should also be mentioned that all reference algorithms

ran in almost constant time with respect to the modified rate.

A plot of the various average times is shown in Figure 4.

Fig. 4. Average times taken by the reference algorithms

It is interesting to observe that the performance of the GPU

1 implementation seems to exhibit a staircase pattern with

increasingly larger plateaus. This is explained by the fact that

the reference GPU algorithm used for sorting the modified

subsequence always require with sizes that are powers of two,

and so the input must be padded to the next larger such value.

An analysis of Figures 7 and 8 suggests that both GPU

implementations of the Split and Merge strategy are clearly

superior to the reference algorithms when the ratio of modified

element is small to medium (5 to 30%) in all scenarios. They

fare even better for larger inputs. Even the CPU implemen-

tation beats the reference GPU algorithms for small modified

ratios in System B, which has a relatively slow GPU paired

with a fast CPU. This kind of pairing also seems to favor GPU

implementation 2 over 1, whereas in System A the differences

between the two have been less evident. Absolute gains were

also more pronounced in System B, with over 2× speedups

for 32-bit scenarios within a modified rate up to 10%.

B. Simulation tests

Two particle simulation tests were built employing the

aforementioned grid-based collision detection. These are

called Rough Sea and Gravity Effect, and two frames of each

simulation are shown in Figure 5.

The simulations were inspired on the particles demo in-

cluded in NVidia’s OpenCL SDK [16]. Both simulations were

run on System A, using a 2M-cell grid, with 128 subdivisions

by axis. Each simulation was run for 10,000 time steps, where

rendering was done at every 3 steps. The Rough Sea simulation

contains 512k particles and physics consists of a uniform

gravity field which clusters particles on the bottom of the box

and contact repulsion between particles and with the box walls.

The Gravity Effect simulation contains 128k particles, where

physics consisted mainly of two poles attracting the particles

and an effect of repulsion between contacting particles or be-

tween particles and the containing box. A comparison showing

Fig. 6. Timings for physics simulation runs: Rough Sea (top) and Gravity
Effect (bottom)

the times of the three main steps for each simulation is shown

in Figure 6. As expected, the times spent in processing the

collisions, physics and rendering were not affected by the

60

Fig. 5. Two frames from the “Rough Sea” (left) and “Gravity Effect” (right) simulations.

sorting strategy employed. In all tests, we notice that using

either GPU Split-Merge strategy implementations improves

the overall times by roughly 10% when compared with runs

using Radix Sort, which fared better than Bitonic Sort in all

cases. In the Rough Sea, GPU2 fared worse than GPU1, which

was not expected, given that standalone results for System A

using 32-bit keys with 512k particles (not shown in this paper)

favored the former over the latter. This can be explained by

the clustering of particles in the bottom half of the grid, which

makes the intervals that must be sorted in the last phase of the

algorithm unduly large.

VII. FINAL REMARKS

The techniques described in this paper have been shown

to be advantageous under some conditions. The empirical evi-

dence shown in Section VI although necessarily limited, points

to the usefulness of the Split-Merge strategy as an adaptive sort

technique, especially when input data vary relatively slowly

over time, and provided that the application has some way

of distinguishing the modified portions of the input. This is

exactly the case of particle simulations using spatial grids.

Obviously, the net improvement observed for the application as

a whole depends on the time spent in the sort phase. Also, the

measurements were conducted for relatively few scenarios, and

using our own implementations, and thus cannot be considered

a complete proof of concept.

As a continuation of this work, we plan on experimenting

with more modern GPU architectures. We are also interested

in porting traditional adaptive sorting algorithm such as the

TimSort to GPU.

REFERENCES

[1] T. Harada, S. Koshizuka, and Y. Kawaguchi, “Sliced data structure for
particle-based simulations on GPUs,” in GRAPHITE, 2007, pp. 55–62.

[2] T. Harada, M. Tanaka, S. Koshizuka, and Y. Kawaguchi, “Real-time
coupling of fluids and rigid bodies,” in APCOM 2007-EPMESC XI
(2007). University of Tokyo, 2007.

[3] Y. Dobashi, Y. Matsuda, T. Yamamoto, and T. Nishita, “A fast simulation
method using overlapping grids for interactions between smoke and rigid
objects,” 2008.

[4] S. Green, “Particle simulation using cuda.” NVIDIA - presentation
packaged with CUDA Toolkit, 2010.

[5] M. C. Lin and S. Gottschalk, “Collision detection between geometric
models: A survey,” in In Proc. of IMA Conference on Mathematics of
Surfaces, 1998, pp. 37–56.

[6] C. Ericson, Real-Time Collision Detection (The Morgan Kaufmann
Series in Interactive 3-D Technology). Morgan Kaufmann, Jan. 2005.
[Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/1558607323

[7] S. Kockara, T. Halic, K. Iqbal, C. Bayrak, and R. Rowe, “Collision
detection: A survey,” in Systems, Man and Cybernetics, 2007. ISIC.
IEEE International Conference on, Oct., pp. 4046–4051.

[8] T. Harada, “Real-Time rigid body simulation on GPUs,” in GPU Gems
3, H. Nguyen, Ed. Addison Wesley Professional, Aug. 2007, ch. 29.
[Online]. Available: http://my.safaribooksonline.com/9780321545428/
ch29

[9] S. Le Grand, “Broad-Phase collision detection with CUDA,” in GPU
Gems 3, H. Nguyen, Ed. Addison Wesley Professional, Aug. 2007,
ch. 32.

[10] C. A. R. Hoare, “Algorithm 64: Quicksort,” Commun. ACM,
vol. 4, no. 7, pp. 321–, Jul. 1961. [Online]. Available: http:
//doi.acm.org/10.1145/366622.366644

[11] R. Sedgewick, “Implementing quicksort programs,” Commun. ACM,
vol. 21, no. 10, pp. 847–857, Oct. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359619.359631

[12] D. R. Martin, “Sorting algorithm animations,” http://www.
sorting-algorithms.com/, 2007.

[13] T. Peters, “Timsort,” 2002, accessed April 2013. [Online]. Available:
http://svn.python.org/projects/python/trunk/Objects/listsort.txt

[14] E. W. Dijkstra, “Smoothsort, an alternative for sorting in situ.” Sci.
Comput. Program., vol. 1, no. 3, pp. 223–233, 1982, errata: Science
of Computer Programming 2(1): 85 (1982). [Online]. Available:
http://dblp.uni-trier.de/db/journals/scp/scp1.html#Dijkstra82

[15] V. Estivill-Castro and D. Wood, “A survey of adaptive sorting
algorithms,” ACM Comput. Surv., vol. 24, no. 4, pp. 441–476, Dec.
1992. [Online]. Available: http://doi.acm.org/10.1145/146370.146381

[16] NVIDIA, “Nvidia OpenCL SDK code samples,” http://developer.
download.nvidia.com/compute/cuda/3_0/sdk/website/OpenCL/website/
samples.html, 2012.

[17] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30–May 2, 1968, spring joint computer conference, ser.
AFIPS ’68 (Spring). New York, NY, USA: ACM, 1968, pp. 307–314.
[Online]. Available: http://doi.acm.org/10.1145/1468075.1468121

[18] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore GPUs,” in Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing, ser.
IPDPS ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 1–10. [Online]. Available: http://dx.doi.org/10.1109/IPDPS.2009.
5161005

[19] G. E. Blelloch, “Prefix sums and their applications,” Synthesis of Parallel
Algorithms, Tech. Rep., 1990.

[20] ——, Vector Models for Data-Parallel Computing. MIT Press, 1990.
[21] T. Ottmann, “Parallel merging,” ser. Lecture Notes in Computer Science

- Advanced Algorithms & Data Structures, no. 15, 2006. [Online].
Available: http://electures.informatik.uni-freiburg.de/portal/download/3/
6950/thm15%20-%20parallel%20merging.pdf

61

20-bit keys, 64k elements

20-bit keys, 1024k elements

32-bit keys, 64k elements

32-bit keys, 1024k elements

Fig. 7. Speedup charts for GPU sorting strategies ran on System A.

20-bit keys, 64k elements

20-bit keys, 1024k elements

32-bit keys, 64k elements

32-bit keys, 1024k elements

Fig. 8. Speedup charts for GPU sorting strategies ran on System B.

62

