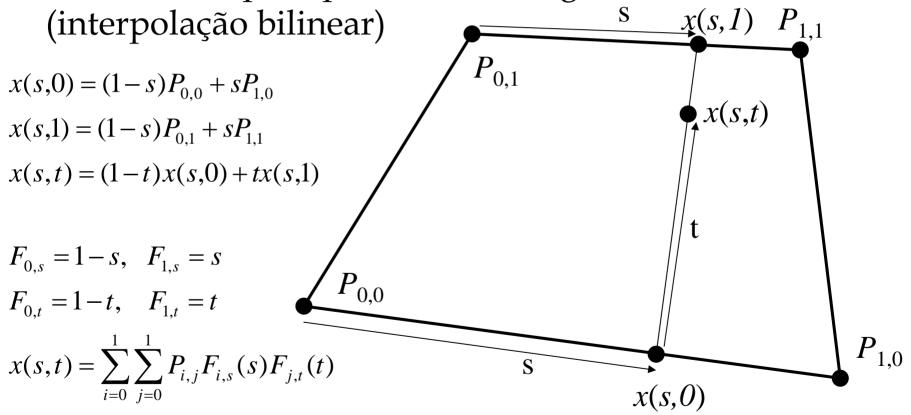
Introdução à Computação Gráfica Superfícies

Claudio Esperança Paulo Roma Cavalcanti

Superfícies Paramétricas

• Pontos são dados por funções $\mathbf{R}^2 \to \mathbf{R}^3$

• Um caso simples: polinomiais de grau 1 (interpolação bilinear)



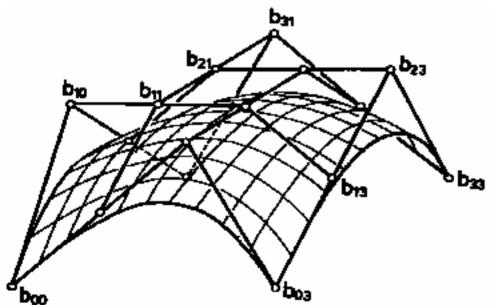
Retalhos de Superfície e Produto Tensorial

- Produto tensorial de duas curvas em forma paramétrica = superfície em forma paramétrica
- Fórmula geral: $\mathbf{x}(s,t) = \sum_{i=0}^{d_s} \sum_{j=0}^{d_t} \mathbf{P}_{i,j} F_{i,s}(s) F_{j,t}(t)$
- Superfície definida para um retângulo no espaço de parâmetros
 - Tipicamente: $0 \le s < 1$, $0 \le t < 1$
- Forma da superfície especificada por uma grade de controle
 - 2 x 2 pontos para uma superfície bilinear
 - 3 x 3 pontos para uma superfície biquadrática
 - etc

Retalhos Bézier

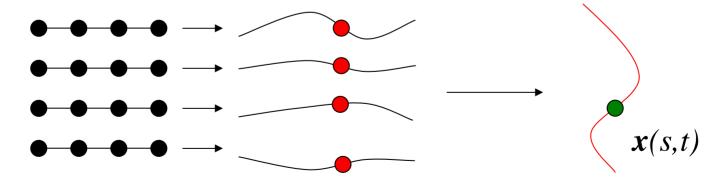
$$\mathbf{x}(s,t) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{P}_{i,j} B_i^n(s) B_j^m(t)$$

- Como as curvas Bézier, $B_i^n(s)$ e $B_j^m(t)$ são os polinômios de Bernstein de graus n e m, respectivamente
- Frequentemente n = m = 3
 - Necessários 4x4 = 16 pontos de controle, $P_{i,j}$



Retalhos de Bézier

- Curvas na fronteira são curvas de Bézier
- *Qualquer* curva para *s* ou *t* constante é uma curva Bézier
- Podemos pensar assim:
 - Cada linha da grade com 4 pontos de controle define uma curva de Bézier para o parâmetro s
 - Ao avaliar cada curva para um mesmo *s* obtemos 4 pontos de controle "virtuais"
 - Pontos de controle "virtuais" definem uma curva Bézier em t
 - Avaliando esta curva em um dado t resulta no ponto x(s,t)



Propriedades dos Retalhos de Bézier

- O retalho interpola os pontos dos cantos da grade de controle
 - Decorre das propriedades análogas das curvas de Bézier
- O plano tangente em um ponto do canto é dado pelas duas arestas da grade incidentes no ponto
 - Decorre do fato que as curvas Bézier das fronteiras incidentes têm tangentes definidas pelas arestas correspondentes
- O retalho é restrito ao fecho convexo da grade de controle
 - As funções de base somam 1 e são positivas em toda parte

Retalhos Bézier em Forma Matricial

$$x(s,t) = S^T B^T P B T$$

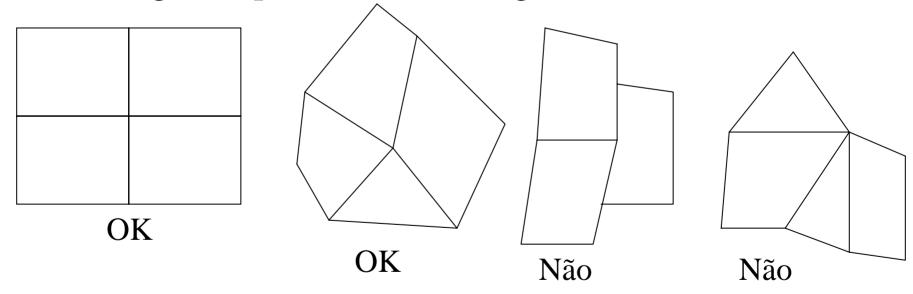
$$x(s,t) = \begin{bmatrix} s^3 & s^2 & s & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_{0,0} & P_{0,1} & P_{0,2} & P_{0,3} \\ P_{1,0} & P_{1,1} & P_{1,2} & P_{1,3} \\ P_{2,0} & P_{2,1} & P_{2,2} & P_{2,3} \\ P_{3,0} & P_{3,1} & P_{3,2} & P_{3,3} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \end{bmatrix}$$

 Se os pontos de controle não se modificam, podese pré-computar o produto das 3 matrizes do meio:

$$x(s,t) = \begin{bmatrix} s^3 & s^2 & s \end{bmatrix} \begin{bmatrix} M_{0,0} & M_{0,1} & M_{0,2} & M_{0,3} \\ M_{1,0} & M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,0} & M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,0} & M_{3,1} & M_{3,2} & M_{3,3} \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \end{bmatrix}$$

Malhas de Retalhos Bézier

- São malhas compostas de diversos retalhos unidos ao longo de suas fronteiras
 - As arestas das grades de controle precisam se justapor perfeitamente
 - As grades precisam ser retangulares



Continuidade em Malhas de Retalhos Bézier

- Como no caso das curvas Bézier, os pontos de controle precisam satisfazer restrições para assegurar continuidade paramétrica
- Continuidade ao longo das arestas dos retalhos:
 - $C^0 \rightarrow$ Pontos de controle da aresta são os mesmos em ambos retalhos
 - ◆ C¹ → Pontos de controle vizinhos aos da aresta têm que ser colineares e eqüidistantes
 - ◆ C² → Restrições sobre pontos de controle mais distantes da aresta
- Para obter continuidade geométrica, as restrições são menos rígidas
 - $G^1 \rightarrow$ Pontos de controle vizinhos aos da aresta têm que ser colineares mas não precisam ser equidistantes
- Para obter continuidade C¹ nos vértices das grades
 - Todas as arestas incidentes no ponto têm que ser colineares

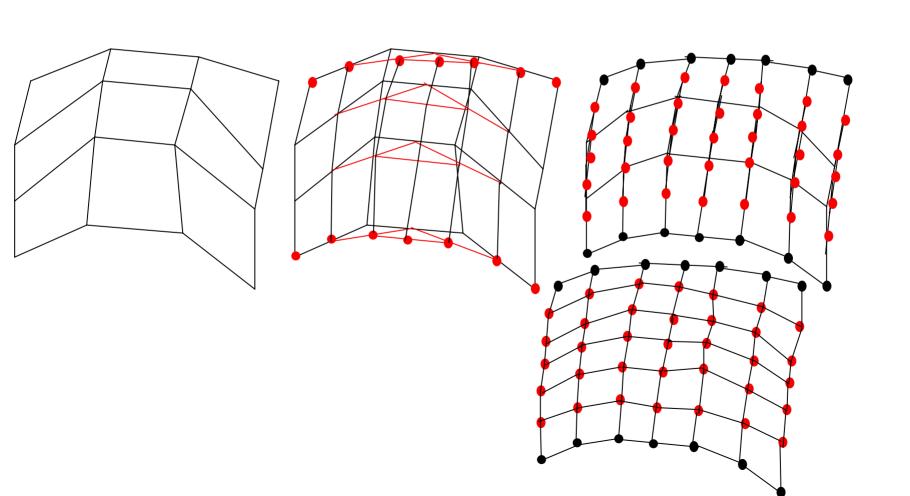
Desenhando Retalhos Bézier

- **Opção 1**: Avaliar o retalho para um conjunto de pontos do domínio paramétrico e triangular
 - Normalmente, s e t são tomados em intervalos (regulares ou não) de forma que os pontos avaliados formam uma grade
 - Cada célula da grade é constituída de quatro pontos que vão gerar 2 triângulos
 - Não se usa quadriláteros visto que os pontos não são necessariamente co-planares
 - Renderização fácil com triangle strips
 - Vantagem: Simples e suportado pelo OpenGL
 - Desvantagem: Não há uma maneira fácil de controlar o aspecto da superfície de forma adaptativa

Desenhando Retalhos Bézier

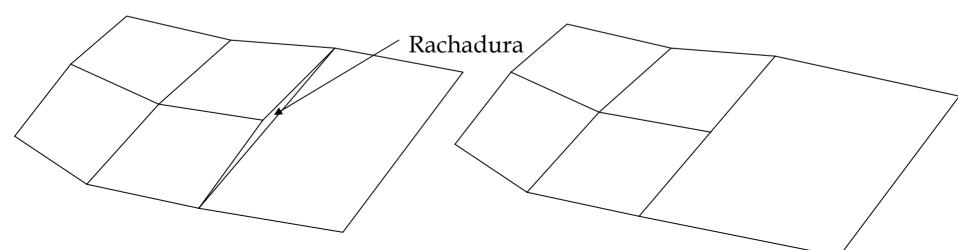
- Opção 2: Usar subdivisão
 - Permite controle de erro durante a aproximação
 - Definida de forma semelhante à subdivisão de curvas Bézier, mas refinamento é feito de forma alternada nos dois eixos de parâmetros
 - Sucessivamente computar pontos médios dos vértices e uní-los
 - Aplicar procedimento inicialmente em cada linha da grade de controle: 4x4 → 4x7
 - Repetir procedimento para cada coluna da grade de controle: $4x7 \rightarrow 7x7$

Midpoint Subdivision



Procedimento Adaptativo

- Através da subdivisão obtemos 4 grades de controle e testamos:
 - Se a grade é aproximadamente plana, ela é desenhada
 - Senão, subdividir em 4 sub-grades e aplicar o procedimento recursivamente
- Problema: Retalhos vizinhos podem não ser subdivididos uniformemente
 - Rachaduras: polígonos de controle não se justapõem
 - Pode ser consertado forçando grades mais subdivididas a se justaporem às grades menos subdivididas ao longo da aresta comum



Computando o Vetor Normal

- Derivadas parciais em relação a t e a s pertencem ao plano tangente
- Vetor normal é calculado normalizando o produto cruzado de ambas

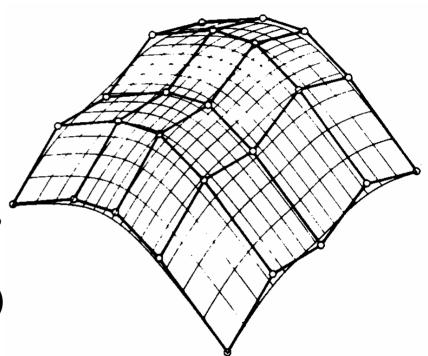
$$\frac{\partial \mathbf{x}}{\partial s}\Big|_{s,t} = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{P}_{i,j} \frac{dB_{i}^{n}}{ds} \Big|_{s} B_{j}^{m}(t) \qquad \frac{\partial \mathbf{x}}{\partial t} \Big|_{s,t} = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{P}_{i,j} B_{i}^{n}(s) \frac{dB_{j}^{m}}{dt} \Big|_{t}$$

$$\mathbf{n} = \frac{\partial \mathbf{x}}{\partial s} \Big|_{s,t} \times \frac{\partial \mathbf{x}}{\partial t} \Big|_{s,t} \qquad \hat{\mathbf{n}} = \frac{\mathbf{n}}{\|\mathbf{n}\|}$$

Retalhos B-spline

$$\mathbf{x}(s,t) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{P}_{i,j} B_i(s) B_j(t)$$

- $B_i(s)$ e $B_j(t)$ são as funções da base B-spline
- É necessário fornecer dois vetores de nós, um para cada direção (parâmetros)
- Também podemos ter superfícies B-spline uniformes e não uniformes



Forma Matricial das funções B-spline bicúbicas

Onde P é a matriz de pontos de controle e M é a matriz de coeficientes

$$P = \begin{bmatrix} \mathbf{P}_{0,0} & \mathbf{P}_{0,1} & \mathbf{P}_{0,2} & \mathbf{P}_{0,3} \\ \mathbf{P}_{1,0} & \mathbf{P}_{1,1} & \mathbf{P}_{1,2} & \mathbf{P}_{1,3} \\ \mathbf{P}_{2,0} & \mathbf{P}_{2,1} & \mathbf{P}_{2,2} & \mathbf{P}_{2,3} \\ \mathbf{P}_{3,0} & \mathbf{P}_{3,1} & \mathbf{P}_{3,2} & \mathbf{P}_{3,3} \end{bmatrix} \qquad M = \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ -3 & 0 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

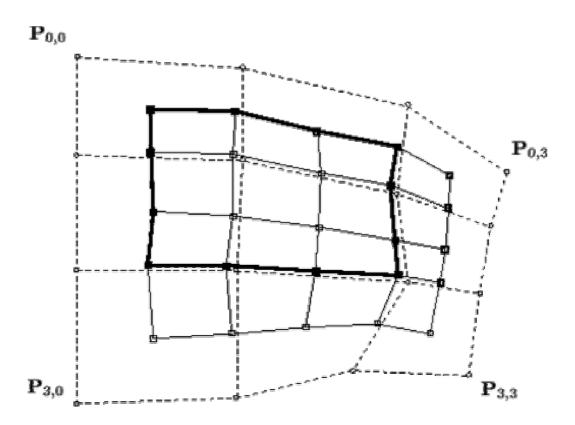
Avaliando Retalhos B-spline Uniformes

- Como todas as funções de base são translações de uma mesma função
 - Seja $a = \lfloor s \rfloor$, $b = \lfloor t \rfloor$
 - Computar: u = s a, v = t b
 - ◆ Usar funções da base para intervalo [0,1)

$$\mathbf{x}(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{P}_{a+i,b+j} B_i(u) B_j(v)$$

Subdivisão de Retalhos B-spline

- A grade de controle de uma B-spline bicúbica pode ser subdividida em 4 sub-grades permitindo um esquema de desenho adaptativo
 - 25 pontos de controle são gerados divididos em 4 grupos de 9
 - http://graphics.cs.ucdavis.edu/CAGDNotes/Cubic-B-Spline-Surface-Refinement/Cubic-B-Spline-Surface-Refinement.html



Propriedades dos Retalhos B-spline

- Retalho restrito ao fecho convexo da grade de controle
- Continuidade é C² para B-splines bicúbicas
- Pode-se forçar interpolação através da duplicação dos nós de controle
 - Problema: Derivadas parciais desaparecem e normais ficam indefinidas
 - Solução: Usar ponto próximo da superfície ou estimar pela média das normais da grade de controle
 - Melhor ainda: Usar B-splines interpoladoras
- O uso de B-splines não uniformes dá mais controle à modelagem
- Retalhos NURBS podem ser também definidos