


1

Table of Contents
Preface

The Deno Handbook



2

Preface
The Deno Handbook follows the 80/20 rule: learn in
20% of the time the 80% of a topic.

In particular, the goal is to get you up to speed quickly
with Deno.

This book is written by Flavio. I publish
programming tutorials every day on my website
flaviocopes.com.

You can reach me on Twitter @flaviocopes.

Enjoy!

https://flaviocopes.com/
https://twitter.com/flaviocopes


3

The Deno Handbook
I explore new projects every week, and it's rare that
one hits my attention so much as Deno did.

What is Deno?
If you are familiar with Node.js, the popular server-side
JavaScript ecosystem, then Deno is just like Node.
Except deeply improved in many ways.

Let's start from a quick list of the features I like the
most about Deno:

It is based on modern features of the JavaScript
language

https://deno.land/


4

It has an extensive standard library
It has TypeScript at its core, which brings a huge
advantage in many different ways, including a
first-class TypeScript support (you don't have to
separately compile TypeScript, it's automatically
done by Deno)
It embraces ES modules
It has no package manager
It has a first-class  await 
It as a built-in testing facility
It aims to be browser-compatible as much as it
can, for example by providing a built-in  fetch 
and the global  window  object

We'll explore all of those features in this guide.

After you use Deno and learn to appreciate its
features, Node.js will look like something old.

Especially because the Node.js API is callback based,
as it was written way before promises and
async/await. There's no change in place for that in
Node, as such a change would be monumental, so
we're stuck to callbacks or to promisifying API calls.

Node.js is awesome and will continue to be the de
facto standard in the JavaScript world. But I think we'll
gradually see Deno more adopted because of its first-
class TypeScript support and modern standard library.

Deno can afford to have everything written with
modern technologies, since there's no backward
compatibility to maintain. Of course there's no

https://flaviocopes.com/es-modules/


5

guarantee that in a decade the same will happen to
Deno and a new technology will emerge, but this is the
reality at the moment.

Why Deno? Why now?
Deno was announced almost 2 years ago by the
Node.js original creator Ryan Dahl at JSConf EU.
Watch the YouTube video of the talk, it's very
interesting and it's a mandatory watch if you are
involved in Node.js and JavaScript in general.

Every project manager must take decisions. Ryan
regretted some early decisions in Node. Also,
technology evolves, and today JavaScript is a totally
different language than what it was back in 2009 when
Node started. Think about the modern ES6/2016/2017
features, and so on.

So he started a new project to create some sort of
second wave of JavaScript-powered server side apps.

The reason I am writing this guide now and not back
then is because technologies need a lot of time to
mature. And we have finally reached Deno 1.0 (1.0
should be released on May 13, 2020), the first release
of Deno officially declared stable.

That's might seem just a number, but 1.0 means there
will not be major breaking changes until Deno 2.0,
which is a big deal when you dive into a new
technology - you don't want to learn something and
then have it change too fast.

https://www.youtube.com/watch?v=M3BM9TB-8yA


6

Should you learn Deno?
That's a big question.

Learning something new such as Deno is a big effort.
My suggestion is that if you are starting out now with
server-side JS and you don't know Node yet, and
never wrote any TypeScript, I'd start with Node.

No one was ever fired for choosing Node.js
(paraphrasing a common quote).

But if you love TypeScript, don't depend on a gazillion
npm packages in your projects and you want to use
 await   anywhere, hey Deno might be what you're
looking for.

Will it replace Node.js?
No. Node.js is a giant, well established, incredibly well
supported technology that is going to stay for
decades.

First-class TypeScript
support
Deno is written in Rust and TypeScript, two of the
languages that today are really growing fast.

In particular being written in TypeScript means we get
a lot of the benefits of TypeScript even if we might
choose to write our code in plain JavaScript.



7

And running TypeScript code with Deno does not
require a compilation step - Deno does that
automatically for you.

You are not forced to write in TypeScript, but the fact
the core of Deno is written in TypeScript is huge.

First, an increasingly big percentage of JavaScript
programmers love TypeScript.

Second, the tools you use can infer many information
about software written in TypeScript, like Deno.

This means that while we code in VS Code for
example, which obviously has a tight integration with
TypeScript since both are developed at MicroSoft, we
can get benefits like type checking as we write our
code, and advanced IntelliSense features. In other
words the editor can help us in a deeply useful way.

Similarities and differences
with Node.js
Since Deno is basically a Node.js replacement, it's
useful to compare the two directly.

Similarities:

Both are developed upon the V8 Chromium
Engine
Both are great for developing server-side with
JavaScript

Differences:

https://code.visualstudio.com/docs/editor/intellisense
https://flaviocopes.com/v8/


8

Node is written in C++ and JavaScript. Deno is
written in Rust and TypeScript.
Node has an official package manager called
 npm . Deno does not, and instead lets you import
any ES Module from URLs.
Node uses the CommonJS syntax for importing
pacakges. Deno uses ES Modules, the official
way.
Deno uses modern ECMAScript features in all its
API and standard library, while Node.js uses a
callbacks-based standard library and has no
plans to upgrade it.
Deno offers a sandbox security layer through
permissions. A program can only access the
permissions set to the executable as flags by the
user. A Node.js program can access anything the
user can access
Deno has a for a long time envisioned the
possibility of compiling a program into an
executable that you can run without external
dependencies, like Go, but it's still not a thing yet.
That'd be a game changer.

No package manager
Having no package manager and having to rely on
URLs to host and import packages has pros and cons.
I really like the pros: it's very flexible, we can create
packages without publishing them on a repository like
npm.

https://github.com/denoland/deno/issues/986


9

I think that some sort of package manager will
emerge, but nothing official is out yet.

The Deno website provides code hosting (and thus
distribution through URLs) to 3rd party packages:
https://deno.land/x/

Install Deno
Enough talk! Let's install Deno.

The easiest way is to use Homebrew:

brew install deno 

Once this is done, you will have access to the  deno 
command. Here's the help that you can get using
 deno --help :

https://deno.land/x/
https://flaviocopes.com/homebrew/


10

flavio@mbp~> deno --help 
deno 0.42.0 
A secure JavaScript and TypeScript runtime 
 
Docs: https://deno.land/std/manual.md 
Modules: https://deno.land/std/  
  https://deno.land/x/ 
Bugs: https://github.com/denoland/deno/issues 
 
To start the REPL, supply no arguments: 
  deno 
 
To execute a script: 
  deno run https://deno.land/std/examples/ 
    welcome.ts 
  deno https://deno.land/std/examples/welcome.ts 
 
To evaluate code in the shell: 
  deno eval "console.log(30933 + 404)" 
 
Run 'deno help run' for 'run'-specific flags. 
 
USAGE: 
    deno [OPTIONS] [SUBCOMMAND] 
 
OPTIONS: 
    -h, --help 
            Prints help information 
 
    -L, --log-level <log-level> 
            Set log level [possible values: debug, 
             info] 
 
    -q, --quiet 
            Suppress diagnostic output 
            By default, subcommands print human- 
            readable diagnostic messages to stderr. 
            If the flag is set, restrict these  
            messages to errors. 
    -V, --version 
            Prints version information 
 
 



11

The Deno commands

SUBCOMMANDS: 
    bundle         Bundle module and dependencies 
                   into single file 
    cache          Cache the dependencies 
    completions    Generate shell completions 
    doc            Show documentation for a  
                   module 
    eval           Eval script 
    fmt            Format source files 
    help           Prints this message or the  
                   help of the given subcommand(s) 
    info           Show info about cache or info 
                   related to source file 
    install        Install script as an executable 
    repl           Read Eval Print Loop 
    run            Run a program given a filename 
                   or url to the module 
    test           Run tests 
    types          Print runtime TypeScript  
                   declarations 
    upgrade        Upgrade deno executable to  
                   newest version 
 
ENVIRONMENT VARIABLES: 
    DENO_DIR             Set deno's base directory 
                         (defaults to $HOME/.deno) 
    DENO_INSTALL_ROOT    Set deno install's output  
                         directory 
                         (defaults to $HOME/.deno 
                         /bin) 
    NO_COLOR             Set to disable color 
    HTTP_PROXY           Proxy address for HTTP  
                         requests 
                         (module downloads, fetch) 
    HTTPS_PROXY          Same but for HTTPS 



12

Note the  SUBCOMMANDS  section in the help, that lists all
the commands we can run. What subcommands do
we have?

 bundle   bundle module and dependencies of a
project into single file
 cache  cache the dependencies
 completions  generate shell completions
 doc  show documentation for a module
 eval  to evaluate a piece of code, e.g.  deno eval
"console.log(1 + 2)" 

 fmt  a built-in code formatter (similar to  gofmt  in
Go)
 help  prints this message or the help of the given
subcommand(s)
 info   show info about cache or info related to
source file
 install  install script as an executable
 repl  Read-Eval-Print-Loop (the default)
 run  run a program given a filename or url to the
module
 test  run tests
 types  print runtime TypeScript declarations
 upgrade  upgrade  deno  to the newest version

You can run  deno <subcommand> help   to get specific
additional documentation for the command, for
example  deno run --help .

As the help says, we can use this command to start a
REPL (Read-Execute-Print-Loop) using  deno  without
any other option.



13

This is the same as running  deno repl .

A more common way you'll use this command is to
execute a Deno app contained in a TypeScript file.

You can run both TypeScript ( .ts ) files, or JavaScript
( .js ) files.

If you are unfamiliar with TypeScript, don't worry: Deno
is written in TypeScript, buf you can write your "client"
applications in JavaScript.

My TypeScript tutorial will help you get up and
running quickly with TypeScript if you want.

Your first Deno app
Let's run a Deno app for the first time.

What I find pretty amazing is that you don't even have
to write a single line - you can run a command from
any URL.

Deno downloads the program, compiles it and then
runs it:

https://flaviocopes.com/typescript/


14

Of course running arbitrary code from the Internet
is not a practice generally recommendable. In this
case we are running it from the Deno official site,
plus Deno has a sandbox that prevents programs
to do anything you don't want to allow. More on
this later.

This program is very simple, just a  console.log() 

call:

console.log('Welcome to Deno 🦕 ') 

If you open the
https://deno.land/std/examples/welcome.ts URL with
the browser, you'll see this page:

https://deno.land/std/examples/welcome.ts


15

Weird, right? You'd probably expect a TypeScript file,
instead we have a web page. The reason is the Web
server of the Deno website knows you're using a
browser and serves you a more user friendly page.

Download the same UR using  wget   for example,
which requests the  text/plain  version of it instead of
 text/html :

If you want to run the program again, it's now cached
by Deno and it does not need to download it again:

You can force a reload of the original source with the
 --reload  flag:



16

 deno run  has lots of different options that were not
listed in the  deno --help  . Instead, you need to run
 deno run --help  to reveal them:



17

flavio@mbp~> deno run --help 
deno-run 
Run a program given a filename or url to the  
module. 
 
By default all programs are run in sandbox without 
 access to disk, network or 
ability to spawn subprocesses. 
  deno run https://deno.land/std/examples/ 
  welcome.ts 
 
Grant all permissions: 
  deno run -A https://deno.land/std/http/ 
  file_server.ts 
 
Grant permission to read from disk and listen to  
network: 
  deno run --allow-read --allow-net  
  https://deno.land/std/http/file_server.ts 
 
Grant permission to read whitelisted files from  
disk: 
  deno run --allow-read=/etc  
  https://deno.land/std/http/file_server.ts 
 
USAGE: 
    deno run [OPTIONS] <SCRIPT_ARG>... 
 
OPTIONS: 
    -A, --allow-all 
            Allow all permissions 
 
        --allow-env 
            Allow environment access 
 
        --allow-hrtime 
            Allow high resolution time measurement 
 
        --allow-net=<allow-net> 
            Allow network access 
 
        --allow-plugin 
            Allow loading plugins 



18

 
        --allow-read=<allow-read> 
            Allow file system read access 
 
        --allow-run 
            Allow running subprocesses 
 
        --allow-write=<allow-write> 
            Allow file system write access 
 
        --cached-only 
            Require that remote dependencies are  
            already cached 
 
        --cert <FILE> 
            Load certificate authority from PEM  
            encoded file 
 
    -c, --config <FILE> 
            Load tsconfig.json configuration file 
 
    -h, --help 
            Prints help information 
 
        --importmap <FILE> 
            UNSTABLE: 
            Load import map file 
            Docs: https://deno.land/std/manual.md 
            #import-maps 
            Specification: https://wicg.github.io 
            /import-maps/ 
            Examples: https://github.com/WICG 
            /import-maps#the-import-map 
        --inspect=<HOST:PORT> 
            activate inspector on host:port  
            (default: 127.0.0.1:9229) 
 
        --inspect-brk=<HOST:PORT> 
            activate inspector on host:port and  
            break at start of user script 
 
        --lock <FILE> 
            Check the specified lock file 
 



19

        --lock-write 
            Write lock file. Use with --lock. 
 
    -L, --log-level <log-level> 
            Set log level [possible values: debug,  
            info] 
 
        --no-remote 
            Do not resolve remote modules 
 
    -q, --quiet 
            Suppress diagnostic output 
            By default, subcommands print human- 
            readable diagnostic messages to stderr. 
            If the flag is set, restrict these  
            messages to errors. 
    -r, --reload=<CACHE_BLACKLIST> 
            Reload source code cache (recompile  
            TypeScript) 
            --reload 
              Reload everything 
            --reload=https://deno.land/std 
              Reload only standard modules 
            --reload=https://deno.land/std/fs/ 
            utils.ts,https://deno.land/std/fmt/ 
            colors.ts 
              Reloads specific modules 
        --seed <NUMBER> 
            Seed Math.random() 
 
        --unstable 
            Enable unstable APIs 
 
        --v8-flags=<v8-flags> 
            Set V8 command line options.  
            For help: --v8-flags=--help 
 
 
ARGS: 
    <SCRIPT_ARG>... 
            script args 



20

Deno code examples
In addition to the one we ran above, the Deno website
provides some other examples you can check out:
https://deno.land/std/examples/.

At the time of writing we can find:

 cat.ts  prints the content a list of files provided
as arguments
 catj.ts  prints the content a list of files provided
as arguments
 chat/  an implementation of a chat
 colors.ts  an example of
 curl.ts  a simple implementation of  curl  that
prints the content of the URL specified as
argument
 echo_server.ts  a TCP echo server
  gist.ts   a program to post files to
gist.github.com
 test.ts  a sample test suite
 welcome.ts  a simple console.log statement (the
first program we ran above)
 xeval.ts  allows you to run any TypeScript code
for any line of standard input received. Once
known as  deno xeval   but since removed from
the official command.

Your first Deno app (for
real)
Let's write some code.

https://deno.land/std/examples/
https://youtu.be/HjdJzNoT_qg?t=1932


21

Your first Deno app you ran using   deno run

https://deno.land/std/examples/welcome.ts   was an
app that someone else wrote, so you didn't see
anything in regards to how Deno code looks like.

We'll start from the default example app listed on the
Deno official website:

import { serve } from  
  'https://deno.land/std/http/server.ts'
const s = serve({ port: 8000 }) 
console.log('http://localhost:8000/') 
for await (const req of s) { 
  req.respond({ body: 'Hello World\n' }) 
} 

This code imports the   serve   function from the
 http/server  module. See? We don't have to install it
first, and it's also not stored on your local machine like
it happens with Node modules. This is one reason why
the Deno installation was so fast.

Importing from  https://deno.land/std/http/server.ts 
imports the latest version of the module. You can
import a specific version using  @VERSION , like this:

import { serve } from  
  'https://deno.land/std@v0.42.0/http/server.ts'

The  serve  function is defined like this in this file:



22

/** 
 * Create a HTTP server 
 * 
 *     import { serve } from  
 *     "https://deno.land/std/http/server.ts"; 
 *     const body = "Hello World\n"; 
 *     const s = serve({ port: 8000 }); 
 *     for await (const req of s) { 
 *       req.respond({ body }); 
 *     } 
 */
export function serve(addr: string |  
  HTTPOptions): Server { 
  if (typeof addr === 'string') { 
    const [hostname, port] = addr.split(':') 
    addr = { hostname, port: Number(port) } 
  } 
 
  const listener = listen(addr) 
  return new Server(listener) 
} 

We proceed to instantiate a server calling the
 serve()   function passing an object with the  port 
property.

Then we run this loop to respond to every request
coming from the server.

for await (const req of s) { 
  req.respond({ body: 'Hello World\n' }) 
} 

Note that we use the  await  keyword without having
to wrap it into an  async   function because Deno
implements top-level await.

https://flaviocopes.com/javascript-await-top-level/


23

Let's run this program locally. I assume you use VS
Code, but you can use any editor you like.

I recommend installing the Deno extension from
 justjavac   (there was another one with the same
name when I tried, but deprecated - might disappear
in the future)

The extension will provide several utilities and nice
thing to VS Code to help you write your apps.

Now create an  app.ts  file in a folder and paste the
above code:

https://flaviocopes.com/vscode/


24

Now run it using  deno run app.ts :

Deno downloads all the dependencies it needs, by first
downloading the one we imported.

The https://deno.land/std/http/server.ts file has several
dependencies on its own:

https://deno.land/std/http/server.ts


25

import { encode } from '../encoding/utf8.ts'
import { BufReader, BufWriter }  
  from '../io/bufio.ts'
import { assert } from '../testing/asserts.ts'
import { deferred, Deferred, MuxAsyncIterator }  
  from '../async/mod.ts'
import { 
  bodyReader, 
  chunkedBodyReader, 
  emptyReader, 
  writeResponse, 
  readRequest, 
} from './_io.ts'
import Listener = Deno.Listener 
import Conn = Deno.Conn 
import Reader = Deno.Reader 

and those are imported automatically.

At the end though we have a problem:

What is happening? We have a permission denied
problem.

Let's talk about the sandbox.

The Deno sandbox
I mentioned previously that Deno has a sandbox that
prevents programs to do anything you don't want to
allow.



26

What does this mean?

One of the things that Ryan mentions in the Deno
introduction talk is that sometimes you want to run a
JavaScript program outside of the Web Browser, and
yet do not allow it to access anything it wants on your
system. Or talk to the external world using a network.

There's nothing stopping a Node.js app to get your
SSH keys or any other thing on your system and send
it to a server. This is why we usually only install Node
packages from trusted sources, but how can we know
if one of the projects we use gets hacked and in turn
everyone else does?

Deno tries to replicate the same permission model that
the browser implements. No JavaScript running in the
browser can do shady things on your system unless
you explicitly allow it.

Going back to Deno, if a program want to access the
network like in the previous case, then we need to
give it permission.

We can do so by passing a flag when we run the
command, in this case  --allow-net :

deno run --allow-net app.ts 

The app is now running an HTTP server on port 8000:



27

Other flags allow Deno to unlock other functionality:

 --allow-env  allow environment access
  --allow-hrtime   allow high resolution time
measurement
 --allow-net=<allow-net>  allow network access
 --allow-plugin  allow loading plugins
 --allow-read=<allow-read>  allow file system read
access
 --allow-run  allow running subprocesses
 --allow-write=<allow-write>   allow file system
write access
 --allow-all  allow all permissions (same as  -A )

Permissions for  net  ,  read   and  write   can be
granular. For example, you can allow reading from a
specific folder using  --allow-read=/dev 

Formatting code
One of the things I really liked from Go was the
 gofmt  command that came with the Go compiler. All
Go code looks the same. Everyone uses  gofmt .



28

JavaScript programmers are used to running Prettier,
and  deno fmt  actually runs that under the hood.

Say you have a file formatted badly like this:

You run   deno fmt app.ts   and it's automatically
formatted properly, also adding semicolons where
missing:

The standard library

https://flaviocopes.com/prettier/


29

The Deno standard library is extensive despite the
project being very young.

It includes:

 archive  tar archive utilities
 async  async utilties
 bytes  helpers to manipulate bytes slices
 datetime  date/time parsing
 encoding  encoding/decoding for various formats
 flags  parse command-line flags
 fmt  formatting and printing
 fs  file system API
 hash  crypto lib
 http  HTTP server
 io  I/O lib
 log  logging utilities
 mime  support for multipart data
 node  Node.js compatibility layer
 path  path manipulation
 ws  websockets

Another Deno example
Let's see another example of a Deno app, from the
Deno examples:  cat :

const filenames = Deno.args 
for (const filename of filenames) { 
  const file = await Deno.open(filename) 
  await Deno.copy(file, Deno.stdout) 
  file.close() 
} 

https://deno.land/std/examples/cat.ts


30

This assigns to the  filenames  variable the content of
 Deno.args  , which is a variable containing all the
arguments sent to the command.

We iterate through them, and for each we use
  Deno.open()   to open the file and we use
  Deno.copy()   to print the content of the file to
 Deno.stdout . Finally we close the file.

If you run this using

deno run https://deno.land/std/examples/cat.ts 

The program is downloaded and compiled, and
nothing happens because we didn't specify any
argument.

Try now

deno run https://deno.land/std/examples/cat.ts  
  app.ts 

assuming you have  app.ts  from the previous project
in the same folder.

You'll get a permission error:



31

Because Deno disallows access to the filesystem by
default. Grant access to the current folder using  --
allow-read=./ :

deno run --allow-read=./  
  https://deno.land/std/examples/cat.ts app.ts 

Is there an
Express/Hapi/Koa/* for
Deno?
Yes, definitely. Check out projects like

deno-drash
deno-express
oak
pogo
servest

Example: use Oak to build
a REST API

https://github.com/drashland/deno-drash
https://github.com/NMathar/deno-express
https://github.com/oakserver/oak
https://github.com/sholladay/pogo
https://github.com/keroxp/servest


32

I want to make a simple example of how to build a
REST API using Oak. Oak is interesting because it's
inspired by Koa, the popular Node.js middleware, and
due to this it's very familiar if you've used that before.

The API we're going to build is very simple.

Our server will store, in memory, a list of dogs with
name and age.

We want to:

add new dogs
list dogs
get details about a specific dog
remove a dog from the list
update a dog age

We'll do this in TypeScript, but nothing stops you from
writing the API in JavaScript - you simply remove the
types.

Create a  app.ts  file.

Let's start by importing the  Application  and  Router 
objects from Oak:

import { Application, Router }  
  from 'https://deno.land/x/oak/mod.ts'

then we get the environment variables PORT and
HOST:

const env = Deno.env.toObject() 
const PORT = env.PORT || 4000
const HOST = env.HOST || '127.0.0.1'

https://github.com/koajs/koa


33

By default our app will run on localhost:4000.

Now we create the Oak application and we start it:

const router = new Router() 
 
const app = new Application() 
 
app.use(router.routes()) 
app.use(router.allowedMethods()) 
 
console.log(`Listening on port ${PORT}...`) 
 
await app.listen(`${HOST}:${PORT}`) 

Now the app should be compiling fine.

Run

deno run --allow-env --allow-net app.ts 

and Deno will download the dependencies:



34

and then listen on port 4000.

The following times you'll run the command, Deno will
skip the installation part because those packages are
already cached:

At the top of the file, let's define an interface for a dog,
then we declare an initial  dogs  array of Dog objects:



35

interface Dog { 
  name: string 
  age: number 
} 
 
let dogs: Array<Dog> = [ 
  { 
    name: 'Roger', 
    age: 8, 
  }, 
  { 
    name: 'Syd', 
    age: 7, 
  }, 
] 

Now let's actually implement the API.

We have everything in place. After you create the
router, let's add some functions that will be invoked
any time one of those endpoints is hit:

const router = new Router() 
 
router 
  .get('/dogs', getDogs) 
  .get('/dogs/:name', getDog) 
  .post('/dogs', addDog) 
  .put('/dogs/:name', updateDog) 
  .delete('/dogs/:name', removeDog) 

See? We define

 GET /dogs 

 GET /dogs/:name 

 POST /dogs 

 PUT /dogs/:name 

 DELETE /dogs/:name 



36

Let's implement those one-by-one.

Starting from  GET /dogs , which returns the list of all
the dogs:

export const getDogs =  
  ({ response }: { response: any }) => { 
  response.body = dogs 
} 

Next, here's how we can retrieve a single dog by
name:



37

export const getDog = ({ 
  params, 
  response, 
}: { 
  params: { 
    name: string 
  } 
  response: any 
}) => { 
  const dog = dogs.filter((dog) =>  
    dog.name === params.name) 
  if (dog.length) { 
    response.status = 200 
    response.body = dog[0] 
    return 
  } 
 
  response.status = 400 
  response.body = { msg: `Cannot  
    find dog ${params.name}` } 
} 

Here is how we add a new dog:



38

export const addDog = async ({ 
  request, 
  response, 
}: { 
  request: any 
  response: any 
}) => { 
  const body = await request.body() 
  const dog: Dog = body.value 
  dogs.push(dog) 
 
  response.body = { msg: 'OK' } 
  response.status = 200 
} 

Notice that I now used   const body = await

request.body()  to get the content of the body, since
the  name  and  age  values are passed as JSON.

Here's how we update a dog's age:



39

export const updateDog = async ({ 
  params, 
  request, 
  response, 
}: { 
  params: { 
    name: string 
  } 
  request: any 
  response: any 
}) => { 
  const temp = dogs.filter((existingDog) => 
    existingDog.name === params.name) 
  const body = await request.body() 
  const { age }: { age: number } = body.value 
 
  if (temp.length) { 
    temp[0].age = age 
    response.status = 200 
    response.body = { msg: 'OK' } 
    return 
  } 
 
  response.status = 400 
  response.body = { msg: `Cannot find dog  
    ${params.name}` } 
} 



40

and here is how we can remove a dog from our list:

export const removeDog = ({ 
  params, 
  response, 
}: { 
  params: { 
    name: string 
  } 
  response: any 
}) => { 
  const lengthBefore = dogs.length 
  dogs = dogs.filter((dog) =>  
    dog.name !== params.name) 
 
  if (dogs.length === lengthBefore) { 
    response.status = 400 
    response.body = { msg: `Cannot find  
      dog ${params.name}` } 
    return 
  } 
 
  response.body = { msg: 'OK' } 
  response.status = 200 
} 



41

Here's the complete example code:



42

import { Application, Router }  
  from 'https://deno.land/x/oak/mod.ts' 
 
const env = Deno.env.toObject() 
const PORT = env.PORT || 4000
const HOST = env.HOST || '127.0.0.1' 
 
interface Dog { 
  name: string 
  age: number 
} 
 
let dogs: Array<Dog> = [ 
  { 
    name: 'Roger', 
    age: 8, 
  }, 
  { 
    name: 'Syd', 
    age: 7, 
  }, 
] 
 
export const getDogs =  
  ({ response }: { response: any }) => { 
  response.body = dogs 
} 
 
export const getDog = ({ 
  params, 
  response, 
}: { 
  params: { 
    name: string 
  } 
  response: any 
}) => { 
  const dog = dogs.filter((dog) =>  
    dog.name === params.name) 
  if (dog.length) { 
    response.status = 200 
    response.body = dog[0] 
    return 



43

  } 
 
  response.status = 400 
  response.body = { msg: `Cannot find  
    dog ${params.name}` } 
} 
 
export const addDog = async ({ 
  request, 
  response, 
}: { 
  request: any 
  response: any 
}) => { 
  const body = await request.body() 
  const { name, age }: {  
      name: string; age: number } = body.value 
  dogs.push({ 
    name: name, 
    age: age, 
  }) 
 
  response.body = { msg: 'OK' } 
  response.status = 200 
} 
 
export const updateDog = async ({ 
  params, 
  request, 
  response, 
}: { 
  params: { 
    name: string 
  } 
  request: any 
  response: any 
}) => { 
  const temp = dogs.filter((existingDog) =>  
    existingDog.name === params.name) 
  const body = await request.body() 
  const { age }: { age: number } = body.value 
 
  if (temp.length) { 
    temp[0].age = age 



44

    response.status = 200 
    response.body = { msg: 'OK' } 
    return 
  } 
 
  response.status = 400 
  response.body = { msg: `Cannot find  
    dog ${params.name}` } 
} 
 
export const removeDog = ({ 
  params, 
  response, 
}: { 
  params: { 
    name: string 
  } 
  response: any 
}) => { 
  const lengthBefore = dogs.length 
  dogs = dogs.filter((dog) =>  
    dog.name !== params.name) 
 
  if (dogs.length === lengthBefore) { 
    response.status = 400 
    response.body = { msg: `Cannot find  
      dog ${params.name}` } 
    return 
  } 
 
  response.body = { msg: 'OK' } 
  response.status = 200 
} 
 
const router = new Router() 
router 
  .get('/dogs', getDogs) 
  .get('/dogs/:name', getDog) 
  .post('/dogs', addDog) 
  .put('/dogs/:name', updateDog) 
  .delete('/dogs/:name', removeDog) 
 
const app = new Application() 
 



45

app.use(router.routes()) 
app.use(router.allowedMethods()) 
 
console.log(`Listening on port ${PORT}...`) 
 
await app.listen(`${HOST}:${PORT}`) 

Find out more
The Deno official website is https://deno.land

The API documentation is available at
https://doc.deno.land and
https://deno.land/typedoc/index.html

awesome-deno https://github.com/denolib/awesome-
deno

A few more random tidbits
Deno provides a built-in  fetch   implementation
that matches the one available in the browser
Deno has a compatibility layer with the Node.js
stdlib in progress

https://deno.land/
https://doc.deno.land/
https://deno.land/typedoc/index.html
https://github.com/denolib/awesome-deno
https://github.com/denoland/deno/tree/master/std/node

	Preface
	The Deno Handbook

