
3D Triangulations for Industrial Applications

Paulo Roma Cavalcanti

Department of Computer Science

Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brasil

http://orion.lcg.ufrj.br/roma

Yalmar Ponce Atencio
Claudio Esperança

Flavio Pereira Nascimento

COPPE Sistemas

Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brasil

http://www.lcg.ufrj.br

Fig. 1. Mesh Gallery.

Abstract—This paper presents a methodology for creating 3D
non-structured meshes for industrial applications, which honor
all the boundaries of the domain. The input for the system
is a multi-region 3D non-manifold model, possibly containing
dangling faces, which poses a number of difficulties for standard
3D triangulation frameworks. The main contribution of this work
consists of a detailed description of how these difficulties were
overcome in a real implementation.

Keywords-3D Triangulations, mesh optimization, multi-region
triangulations.

I. INTRODUCTION

The robust generation of non-structured 3D meshes is

fundamental in several areas of the applied sciences, such as

Finite Element Analysis, Computer Graphics, Geo-sciences,

Engineering, etc. The mesh generation is the process of

decomposing a domain into a set of simplices satisfying certain

geometrical criteria, in order to allow its usage in several

kinds of simulations, for example, the evolution of sedimentary

basins and multiphase fluid flow within sediments (Figure 1).
Algorithms for mesh generation have been an active re-

search topic in the past three decades [1], and three main

families of algorithms have emerged: Octree based methods

[2], [3], Delaunay based methods [4], [5], [6], [7] and Ad-

vancing Front [8], [9], [10], [11].
Depending on the purpose of the application, the mesh

generation algorithm may or may not honor the boundary

of the underlying model, which means that the boundary of

the original model can only be approximated in the final

mesh. Nonetheless, one of the main sources of difficulties in

any Computational Geometry algorithm is the finite precision

nature of the calculations performed by digital computers.

Therefore, the robustness of the algorithms is a main concern

in any implementation used for production.

This paper presents a 3D mesh generator, which can be

used for triangulating any 3D non-manifold model given as a

set of polygonal surfaces. The implementation uses the CGAL

library (http://www.cgal.org) for several of its data structures

in order to achieve robustness. Although the CGAL library

has procedures to produce a 2D or 3D Delaunay triangulation

from a cloud of points, the creation of constrained triangu-

lations is still limited, mainly because CGAL does not have

a general way of inputting complex geometric models. As a

consequence, CGAL is only able to create meshes of domains

given by a manifold surface mesh, or multi-region domains

given by the evaluation of an implicit (scalar) function. In any

case, the boundary of the domain is only approximated in the

resulting mesh (Figure 2).

To cope with such limitations, we developed a methodology

for inputting and representing 3D non-manifold models, which

partitions the space into a set of 3D regions, by using only the

tools available in the CGAL library. Our algorithm first creates

2012 25th Conference on Graphics, Patterns and Images

1530-1834/12 $26.00 © 2012 IEEE

DOI 10.1109/SIBGRAPI.2012.23

102

2012 25th SIBGRAPI Conference on Graphics, Patterns and Images

1530-1834/12 $26.00 © 2012 IEEE

DOI 10.1109/SIBGRAPI.2012.23

102

2012 XXV SIBGRAPI Conference on Graphics, Patterns and Images

1530-1834/12 $26.00 © 2012 IEEE

DOI 10.1109/SIBGRAPI.2012.23

102

Fig. 2. Implicit Domain generated from a multi-region model and the
corresponding triangulation.

a Delaunay triangulation of the vertices of the input model, and

then recovers all of the missing edges and faces of the original

model. We have also implemented a mesh improvement phase

to increase the quality of the final mesh.

II. INPUT MODEL

The CGAL library has functions for inputting models, either

bounded by a 2D manifold surface mesh, or defined by an im-

plicit function. Unfortunately, multi-region models defined by

several non-manifold surface meshes can not be input directly,

but only implicitly, by means of a scalar field. This is due to

the fact that surface boundaries are routinely represented by

Half-Edge data structures in the CGAL library, which are not

amenable to describing non-manifold domains. Nonetheless,

there are several important applications where the domain must

be represented by a 3D non-manifold model, possibly with

dangling faces, which cannot be appropriately described by an

implicit function. To deal with such kinds of complex models,

we propose a feasible solution by breaking the model into a

set of simple surface patches, we call “fragments”.

Furthermore, the 3D triangulation of multi-region models

requires an scheme for attaching attributes to every surface or

region presented in the domain, so one can set properties to

be used by a simulation process.

Therefore, our data structure defines the following elements:

• Vertex: represents a vertex of the model, with its coordi-

nates, x, y, z, and possesses a unique identifier, called the

vertex index.

• Face: is a list of vertex indices, which describes a face

of the model, and has a unique identifier called the face

index.

• Fragment: is a list of connected faces identified by a

unique fragment index. This way, each fragment corre-

sponds to a surface patch used in the construction of

the input model. In the particular case of a Geo-science

model, it can be a horizon, a fault, or a face of the

model bounding box. Each face between two adjacent

regions belong to the same fragment. Also, every face in

a fragment must have the same attribute set.

• Region: is composed by a list of fragment indices,

corresponding to faces with the same orientation. This

way, for each region, a fragment list has faces oriented in

the clockwise order, while its adjacent region is traversed

in counter-clockwise order. The region is identified by a

unique region index.

III. 3D CONSTRAINED TRIANGULATION

Our triangulation algorithm employs the CGAL Delaunay

engine to triangulate the convex hull of the vertices of the

model. Therefore, there can be a set of edges and faces present

in the input model, but absent in the Delaunay triangulation.

These missing elements are introduced one by one to produce

a constrained triangulation, which contains all of the vertices,

edges and faces of the input surfaces.

The algorithm is described in [12], which can be summa-

rized in five steps:

1) Convex hull: the triangulation of the convex hull defined

by the vertices of the input model is created.

2) Edge recovery: the missing edges, that is, the edges of

the input model that are not in the Delaunay triangula-

tion, created in step 1, are inserted into the triangulation.

3) Face recovery: the missing polygonal faces of the input

model are inserted into the triangulation.

4) Classification: all of the simplices of the triangulation

are classified relatively to the input model. This way, all

tetrahedra will be associated to the region of the space

in which it is contained.

5) Mesh improvement: a series of transformations are

applied to the mesh to improve the shapes of its

faces/tetrahedra.

Some auxiliary data structures are necessary to keep the

consistency between the original model and the triangulation.

The input model is represented by a set of fragments, which

must be kept up-to-date during the triangulation, so that any

new vertex, edge or face created is also inserted into the model.

IV. AUXILIARY POINTS

The regions of the model must be filled with auxiliary

(Steiner) points, so the point distribution permits the gen-

eration of good shaped tetrahedra. For this purpose, a grid

is defined in the model bounding box, and points keeping

a minimum distance from all surfaces are inserted into the

model. The position of these points can be determined by

three types of lattices: cubic, hexagonal [13], and adaptive.

In any case, an octree is kept for avoiding the insertion of

points too close to a face of the model. The subdivision goal

is to achieve a configuration where there are at most three

faces per cell. Each point is then tested against the faces of

the cells it interferes with [14], before being added to the

model, as depicted in Figure 3. The threshold is a function of

the distance between two adjacent grid vertices.

V. EDGE RECOVERY

Edge recovery implies checking which constrained edges

are missing from the triangulation of the model’s convex hull,

and forcing its appearance in the final triangulation.

The process of edge recovery we used is known as stitching
[15], [16] and, is based on the insertion of vertices on a missing

edge. This process works because in a Delaunay triangulation

each vertex is connected to its closest neighbor by an edge.

However, to avoid an infinite loop in certain configurations,

103103103

Fig. 3. Auxiliary Octree and the threshold (depicted as a yellow circle), used
to find out the closest face to the given point.

where a new vertex causes the elimination of a previously

inserted edge [17], protecting spheres centered on the vertices

of the edges are used.

This process is repeatedly executed for each sub-segment of

a missing edge, and in the end, the edge is recovered, maybe

as a collection of triangulation edges.

VI. FACE RECOVERY

Face recovery implies checking which constrained faces are

missing from the triangulation of the model convex hull, and

forcing its appearance into the final triangulation. This process

is more complex than edge recovery, mainly because even if

all edges on the boundary of a missing face are present in the

triangulation, the face itself maybe missing.

Hazlewood [18] has shown it is possible to produce con-

strained triangulations, by just re-triangulating tetrahedra,

which are intersected by a missing polygonal face. First, all

intersection points between a missing polygonal face and the

edges of the triangulation are found. Then, all intersected

tetrahedra are locally re-triangulated. Since all constrained

edges have been already recovered, the local triangulation can

be performed through the use of the operators described by

Weatherill and Hassan [16].

These operators deal with the cases where the face com-

pletely intersects a tetrahedron, which is divided into a set of

new polyhedra. The new polyhedra can be tetrahedra, pyra-

mids with quadrilateral bases, or prisms with two triangular

and three quadrilateral faces.

Since each tetrahedron is processed separately, it is not

possible to assure that all intersected tetrahedra will be re-

triangulated consistently by these operators. The reason is

that a prism may have all of its quadrilateral faces already

triangulated by its adjacent tetrahedra. This problem is solved

by inserting a new point in the interior of the prism, and

connecting this new point to the edges on the prism.

VII. RE-TRIANGULATION OPERATORS

1) Tetrahedron-Tetrahedron Triangulation: In this case,

only one edge of a tetrahedron intersects the missing face.

Therefore, a vertex is inserted in the intersection point between

the edge and the face, thus splitting the tetrahedron in two new

tetrahedra sharing the face. (Figure 4).

Fig. 4. Tet-Tet. Fig. 5. Tet-Pyramid.

2) Tetrahedron-Pyramid Triangulation: In this case, two

edges of a tetrahedron intersect the missing face. Therefore,

two vertices are inserted on the intersection points between

the two edges and the face, thus splitting the tetrahedron in a

new tetrahedron and a pyramid sharing the face. The pyramid

is also re-triangulated conforming to its neighborhood (Figure

5).

3) Tetrahedron-Prism Triangulation: In this case, three

edges of a tetrahedron intersect the missing face. Therefore,

three vertices are inserted on the intersection points between

these three edges and the face, thus splitting the tetrahedron

into a new tetrahedron and a prism, sharing the face. In this

particular case, the prism can be re-triangulated based on its

neighborhood (Figure 6), or not. Nonetheless, a new vertex

can always be inserted into the prism in such a way it can be

re-triangulated conforming to its neighborhood (Figure 7).

Fig. 6. Tet-Prism. Fig. 7. Point insertion.

4) Prism-Prism Triangulation: In this case, four edges of a

tetrahedron intersect the missing face. Therefore, four vertices

are inserted on the intersection points between the edges and

the face, thus splitting the tetrahedron into two prisms, sharing

the face. The prisms have at least one degree of freedom,

because of the common face (its diagonal can be chosen

arbitrarily). This condition may allow the re-triangulation

of both prisms, conforming to their neighborhoods, or not.

(Figure 8). If a prism cannot be re-triangulated, a new vertex

can always be inserted into it, so it can be re-triangulated

conforming to its neighborhood (Figure 9).

104104104

Fig. 8. Prism-Prism. Fig. 9. Point insertion.

VIII. SIMPLEX CLASSIFICATION

After all faces have been recovered, there is a constrained

triangulation of the model convex hull. At this point, the

triangulation has to be carved by removing all tetrahedra into

the convex hull, but outside the model. The carving involves

traversing all external tetrahedra (outside the triangulation

domain) and checking whether its faces are marked. By

definition, an external tetrahedron is one that does not possess

any face-adjacent tetrahedron in the triangulation. If there is

any marked face F in an external tetrahedron A, which does

not possess an adjacent tetrahedron B, then tetrahedron A
should be kept in the triangulation. Otherwise, tetrahedron

A should be removed and all its adjacent tetrahedra which

were not checked yet, should be considered external tetrahedra.

This procedure ends when all external tetrahedra have been

evaluated and removed.

After the carving, each simplex in the mesh should be

classified to have its attributes set [19], [20], according to

the properties corresponding to the regions in a multi-region

model. For this purpose, it is necessary to keep the data

structure representing the input model updated during all

the triangulation process, as new vertices, edges and faces

are created in the phases of edge and face recovery. As a

consequence, the triangulation faces on the surfaces of the

model are always known. These faces can be used to set

boundary conditions for running simulations.

The simplex classification involves a point in region testing

for a tetrahedron, to determine the region it is into, which

can be used as a seed to a flood-fill algorithm. By using the

mesh adjacency information, all tetrahedra in a region can be

determined and marked during a recursive traversal, which

stops when no unmarked tetrahedron can be reached without

crossing the boundary of the region.

IX. MESH QUALITY

After the mesh generation, heuristic methods are commonly

used to improve the quality of the mesh, (in fact, the quality

of its tetrahedra). The quality of a tetrahedron is generally

expressed by a number, which estimates its effect (positive

or negative) on the interpolation error, the discretization error,

and on the stiffness matrix conditioning. The mesh quality is

strongly influenced by its worst elements, that is, the worst

tetrahedra have more influence than the average tetrahedra.

Fig. 10. Slivers. The triangulation on the left does not satisfy the Delaunay
(empty sphere) criterion. The other two triangulations pass the empty sphere
criterion, and are Delaunay triangulations with slivers.

A sliver is a tetrahedron whose four vertices are very

close to a plane, and whose perpendicular projection onto this

plane is a convex quadrilateral without a short edge. Slivers

are always undesirable in tetrahedral meshes, which were

generated for being used in applications of the Finite Element

Method. Even when the set of points is well distributed in

space, slivers may show up in 3D Delaunay triangulations

(Figure 10). Therefore, sliver removal algorithms are always

applied during the mesh generation process.

There are two main methods for mesh improvement:

smoothing and topological transformations. Smoothing based

methods move some vertices to improve the shape of the

incident tetrahedra, and they do not change the mesh topology

(connectivity). Topological transformations, on the other hand,

remove tetrahedra from the mesh and replace them by a new

set of tetrahedra that fill the same space. As a consequence,

the topology of the mesh can be changed.

Smoothing methods belong to the numerical optimization

domain, while topological transformations belong to the com-

binatorial optimization domain. Both techniques are more

effective when applied together.

Smoothing and topological transformations are used by hill-

climbing methods to optimize the quality of a mesh. A special

function maps each mesh onto a set of values, which describe

the mesh. Hill-climbing methods evaluate the application of

a certain operation in an specific region of the triangulation.

If the quality of the modified mesh is greater than the quality

of the original mesh, then the operation is effectively applied

to the mesh, and the hill-climbing method looks for another

operation, which improves the quality of the new mesh.

Operations that do not improve the objective-function value are

not applied to the mesh. Therefore, the final mesh cannot be

worse than the original mesh. The hill-climbing method ends

when no operation is able to produce any further improvement.

Freitag and Ollivier-Gooch [21] presented a hill-climbing

method that combines smoothing, based on optimization, with

several topological transformations, such as flips 2-3, flips 3-

2 and an operation called edge removal (Figure 12). They

also describe the performance of several different scheduling

strategies on a set of meshes. It should be noted that scheduling

refers either to the order and number of operations or the crite-

ria for selecting the tetrahedra that should be improved. They

also show that their best scheduling remove most of the badly

shaped tetrahedra, and offer some empiric recommendations

about what makes a scheduling better than another.

105105105

Klingner and Shewchuk [22] propose some new topological

operations, beyond the smoothing applied to vertices on the

boundary, to empower the repertoire of operations of the hill-

climbing method. They also presented a new scheduling that

employs these new operations, and show that, by applying all

operations together, a better result is produced than applying

them separately. Even taking speed into account, they make

an analysis of the operations with greater impact on the

mesh improvement, either individually or combined with other

operations.

X. SMOOTHING

The most famous smoothing technique is the Laplacian

smoothing [23], which moves a vertex to the centroid of the

vertices it is connected to (Figure 11). Typically, the Laplacian

smoothing applies several smoothing steps to each vertex in

sequence, where each step moves just one vertex at a time.

The Laplacian smoothing, although popular and effective on

bidimensional meshes, may produce a high number of bad

tetrahedra on tridimensional meshes.

Fig. 11. Bidimensional smoothing example. There can be seen that the
smoothed vertex should stay in the gray region to avoid topological (connec-
tivity) issues in the mesh.

Freitag et al. [24] proposed a smoothing algorithm to opti-

mize the worst tetrahedron in the set. In practice, this algorithm

maximizes the smaller angle among all of the tetrahedra

incident on a given vertex. This smoothing is applied only to

vertices inside the mesh, that is, vertices on the boundary of

the mesh are not smoothed. However, Klingner and Shewchuk

[22] have extended this smoothing to vertices on the boundary

of the mesh. In this case, it is necessary that the faces on the

boundary of the mesh incident on a vertex lie within a small

distance of a given plane. This way, these vertices can be

smoothed along this plane.

The smoothing technique chosen in this work is known as

smart smoothing [21]. Should a smoothing operation com-

promise the quality of the corresponding tetrahedra, then the

operation is not applied. Therefore, the quality of the mesh

never gets worse because of the smoothing.

XI. TOPOLOGICAL TRANSFORMATIONS

Topological transformations encompass operations that

modify the connectivity of the mesh, while preserving its

volume. New tetrahedra replace some tetrahedra of the mesh,

which occupy the same space. In this phase of the mesh

generation process, this is done in such a way that the

quality of the mesh is improved by means of tetrahedra

replacement. Should the new tetrahedra have a lower quality

compared to the tetrahedra to be replaced, then the operation

is not performed. The following topological transformations

are implemented: flip 2-3, flip 3-2 and flip 4-4 ([6]).

Fig. 12. Some topological transformations employed in the mesh improve-
ment.

XII. SLIVER REMOVAL

Cavendish et al. [25] have shown how the presence of slivers

is prejudicial to tridimensional triangulations. Sliver removal is

not a simple task. Furthermore, even Delaunay triangulations

generated from well distributed points can contain slivers, as

noted by Talmor [26].

The first positive result in sliver removal was obtained by

Chew [27], who adds new points to obtain a uniformly dense

mesh. Cheng et al. [28] have shown how to specify weights

to the points, during the creation of a weighted Delaunay

triangulation, in such a way that slivers do not appear. This

method does not add new points. Unfortunately, though, it is

not completely effective for an arbitrary model. Edelsbrunner

et al. [29] propose some mesh improvement techniques to be

applied in a post-processing phase to remove slivers, mainly

using smoothing operations.

In the mesh generator implemented in this work, some op-

erations to remove slivers in several phases along the process

have been implemented. However, certain operations can only

be performed after recovering the missing faces, since these

operations do not honor, globally, the Delaunay criterion. The

sliver removal operations include: vertex smoothing, flip 2-3,

flip 3-2 and flip 4-4. After the phase of simplex classification,

where tetrahedra outside the model are removed, a new sliver

removal operation is possible: sliver peel off.

A. Sliver Peel Off

This operation detects slivers with a face on the boundary of

the triangulation, and simply removes them. The four vertices

of a sliver are almost co-planar, which means its volume can

be considered null. Therefore, the peel off operation will not

introduce any change inside the triangulation, because the

corresponding tetrahedra are on the boundary.

XIII. MESH IMPROVEMENT

The success of the Finite Element Method depends on the

shape of the tetrahedra in the mesh. Large dihedral angles

(near 180 degrees) cause severe interpolation errors and reduce

the precision of numerical simulations [30], [31]. On the other

hand, small dihedral angles cause stiffness matrices, associated

to the Finite Element Method, to be ill-conditioned [31]. In

some cases, a few bad tetrahedra can ruin a whole simulation.

106106106

For a typical model, the constrained Delaunay triangulation

generated may have a huge amount of undesired badly shaped

tetrahedra. To cope with this issue, a very common approach

is just adding points into the model bounding box, positioned

at vertices of a regular grid. Nonetheless, this grid may cause

the generation of an elevated number of tetrahedra. As a con-

sequence, the appropriate approach is using an adaptive grid

[22], thus allowing the generation of regular tetrahedra (good

quality) into the model. During the phase of the generation of

the Delaunay triangulation, the points of the grid are inserted,

according to the Delaunay criterion, in the same way as the

points of the model.

The quality of a tetrahedron can be accessed by a single

numerical value, called the quality measurement. There are

several ways of determining this quality measurement [22],

[31], and we chose the least value of the sine, between the six

dihedral angles of a tetrahedron, also known as the smallest

sine measurement. This measurement penalizes either large or

small angles, and Freitag and Ollivier-Gooch [21] consider it

the most effective among all tested measurement criteria.

Klingner and Shewchuk [22] employ a hill-climbing method

that processes all of the tetrahedra in the mesh, so the worst

tetrahedra in the resulting mesh are as good as possible.

Although giving excellent results with respect to the quality of

tetrahedra, its running time is very high. Therefore, since badly

shaped tetrahedra have a higher influence than average shaped

tetrahedra, the hill-climbing method used in this work will pro-

cess only badly shaped tetrahedra. A tetrahedron is considered

bad if its dihedral angles, minimum and maximum, are outside

a pre-defined range, defined in the method implementation.

Operations, such as smoothing, flip 2-3, flip 3-2 and flip

4-4, are also employed in our hill-climbing method. We also

use the point insertion scheme [22].

A. Point Insertion

This operation computes a position in a bad shaped tetrahe-

dron, and then tries to insert a point at this position (Figure 13).

As a consequence, the best possible set of tetrahedra to be

removed from the triangulation needs to be calculated. This

set of tetrahedra is called a cavity. The triangulation is seen as

a visibility graph, relative to the position of the inserted point,

and the cavity computation is performed as a search in this

graph.

Fig. 13. Point insertion: a bi-dimensional example. On the left, there can
been seen the vibility relative to the inserted point p. On the right, there can
be seen the cavity (in blue) calculated using the visibility graph.

The triangulation is reconstructed by connecting the inserted

point to the faces on the boundary of the cavity, followed by a

smoothing of the new vertex. If the quality of new tetrahedra

is superior to the quality of the tetrahedra previously in the

cavity, then the operation is executed. Otherwise, the mesh

remains the same.

It is possible that a vertex is removed from the mesh, if

all tetrahedra incident to it are part of the cavity. Therefore,

sometimes this operation reduces the number of vertices in the

mesh.

B. Scheduling

Scheduling encompasses the order and number of opera-

tions to be executed by the hill-climbing method, and also

defines on which set of tetrahedra the operations are going

to be performed. In general, the scheduling is performed in

steps, which apply a set of operations on all of the selected

tetrahedra. The scheduling schemes described in the literature

are heuristic, and have been developed by means of trial and

error. However, they offer valuable clues based on practical

tests.

Joe’s algorithm [32] visits each face and checks whether any

transformation from its repertoire can improve, locally, a set

of tetrahedra. The algorithm checks all faces and ends when

a step does not cause any improvement in the mesh.

The scheduling of Freitag and Ollivier-Gooch [21] starts

with two steps of flips 2-3, followed by a step of edge removal

and two steps of smoothing on all tetrahedra of the mesh.

Then, it executes a step of flip 2-3 and a face removal operation

only on the worst tetrahedra of the mesh. This scheduling ends

with two steps of smoothing on all vertices of the mesh.

Klingner and Shewchuk [22] developed a scheduling with-

out a fixed number of steps. They begin with a smoothing

step on all vertices and a topological transformation without

point insertion. All transformations try edge removal first and

then face removal. The scheduling proceeds with a loop to

smooth all vertices. If the smoothing is not able to improve

the mesh quality, then topological transformations are tried. If

no improvement is achieved, then point insertion is executed.

Every time one of these operations improves the quality of

the mesh, the loop is reset. The scheduling ends when three

consecutive steps of the loop are not able to improve the

quality of the mesh. Their scheduling offers very good results,

for improving the quality of the mesh. However, the run time

of the method is high.

In this work, the running time for improving the mesh is

an important requirement. Therefore, the scheduling chosen

tries to balance the running time of the mesh improvement

algorithm and the quality of tetrahedra in the triangulation.

The goal of the improvement process implemented is not to

obtain a mesh whose worst tetrahedra are as good as possible.

Rather, the goal is to reduce the number of bad tetrahedra.

The scheduling mechanism has the effect of traversing all

of the mesh, always improving its tetrahedra, even those ac-

ceptable from the point of view of the Finite Element Method.

Since bad tetrahedra are really undesirable, the improvement

operations, inside the loop, are performed only on them.

Our scheduling algorithm starts with a smoothing step

applied on all vertices inside the mesh. Then, it performs a

107107107

loop that tries to improve a bad tetrahedron at a time. The

order in which the operations are executed, in the loop, is the

following: vertex smoothing, flip 3-2, flip 4-4, flip 2-3 and

point insertion. This way, the performance of the scheduling

is not a critical factor, as long as the quality of the mesh is

not prejudicial to the Finite Element Method.

Fig. 14. Armadilo. Fig. 15. Bimba.

Fig. 16. Budha. Fig. 17. SPX.

Fig. 18. Elephant. Fig. 19. Gulf of Mexico with
six regions and a fault.

Fig. 20. Synthetic. Fig. 21. Salt.

TABLE I
SOME MESH STATISTICS GENERATED WITH OUR METHODOLOGY.

Model Vtx Tet Bad tet Bad tet Time Time
before after (gen.) (imp.)

Budha 52158 160387 9121 294 698sec 56sec
Bimba 78635 205587 2606 55 874sec 67sec

Armadilo 92555 243115 16898 1442 1052sec 89sec
SPX 36635 181996 527 0 715sec 59sec

Elephant 69834 336681 632 0 985sec 101sec
Salt 147242 818903 1697 14 5981sec 563sec

Synthetic 131801 693492 425 0 3745sec 279sec

XIV. CGAL

CGAL (Computational Geometry Algorithm Library) is

an open source project aiming at providing an easy access

to efficient C++ geometric algorithms. The CGAL library

contains data structures, algorithms, and predicates, which

can be applied on geometric objects, such as: points, vectors,

segments, polygons, etc. These objects and predicates compose

the geometric nucleus (kernels) of the library.

Applications requiring an accurate numerical precision

should employ a kernel supporting exact arithmetic, for in-

stance, a kernel based on the GMP library (GNU Multi-
Precision Library). GMP is an open source library for appli-

cations demanding arithmetic with an arbitrary precision, and

can be applied onto several numerical representations. In our

mesh generator, the chosen kernel uses exact predicates and

exact geometry for the objects, therefore being robust in all

phases of the mesh generation. Exact predicates are essential

in the 3D Delaunay mesh generation and the exact geometry

is necessary when performing intersection operations.

XV. LIMITATIONS

It should be noted that if the input model has small dihedral

angles between some constrained faces, the corresponding

(bad) tetrahedra cannot be removed, since the mesh generator

honors the boundaries by design. This is a common situation in

Geo-science models, for instance Figure 19, where all surfaces

meet at an internal fault. Another requirement is that the

regions of the input model must be water-tight, so the mesh

does not ”leak” from one region to another.

The memory consumption is mainly dictated by CGAL data

structures. In particular, the 3D triangulation data structure

represents each tetrahedron by four vertex pointers and four

neighbor pointers, plus four coordinate values for each vertex.

Fragments are represented by a Half-edge data structure,

but these tend to add little to the memory footprint of the

application.

XVI. CONCLUSIONS AND FUTURE WORK

The main goal of this work was obtaining a robust imple-

mentation of a constrained mesh generator, suited for indus-

trial applications. In the Geo-science area, for instance, the

generation and maintenance of numerical meshes can be quite

complex for basins that have undergone extensive changes

in geometry, as a result of compaction, diapirism, and fault

motion [33].

108108108

The mesh generator is based upon the 3D Delaunay trian-

gulation paradigm, and is able to apply a set of operations in

order to improve the quality of its tetrahedra.

The whole system has been implemented with portability

as a requirement, and it runs either on 32 or 64 bit operating

systems, such as Linux, Mac OS and Windows, using the same

source code. The code is object oriented and was written in

C++.

The implementation used the CGAL library and the main

contribution of the paper was the creation of a scheme to

break the model into fragments, thus allowing the input of

complex, multi-region domains. We also combined several

scheduling mechanisms available in the literature, in order to

produce a mesh in a reasonable time and with a small number

bad elements, as can be seen in table I. The table depicts

the number of vertices, tetrahedra, bad elements (before and

after mesh optimization), and the run time (for generating

and improving the mesh), corresponding to the models in

Figures 14, ... 21. Those figures also present the histogram

of minimum dihedral angles, before and after optimizing the

mesh.

The sequence of this work will evolve in the direction of

obtaining the best mesh as possible, given that the surfaces

defining the domain (e.g., a sedimentary basin) may have some

structural small dihedral angles, commonly known as pintch-

out. Therefore, better sliver removal and faster scheduling

algorithms will have to be implemented. We are also working

to be able to generate and process some huge meshes, with

hundred of million tetrahedra.

REFERENCES

[1] S. Owen, “A survey of unstructured mesh generation technology,” in
Proceedings of the Seventh International Meshing Roundtable. Dear-
born, Michigan: Sandia National Laboratories, October 1998.

[2] W. J. Schroeder and M. S. Shephard, “A combined octree/Delaunay
method for fully automatic 3-d mesh generation,” International Journal
for Numerical Methods in Engineering, vol. 29, pp. 37–55, 1990.

[3] M. S. Shephard and M. K. Georges, “Automatic three-dimensional mesh
generation by the finite octree technique,” International Journal for
Numerical Methods in Engineering, vol. 32, pp. 709–749, 1991.

[4] D. F. Watson, “Computing the n-dimensional Delaunay tesselation with
application to Voronoi polytopes,” The Computer Journal, vol. 24, no. 2,
pp. 167–172, 1981.

[5] B. Joe, “Three-dimensional triangulations from local transformations,”
SIAM J. Sci. Stat. Comput., vol. 10, no. 4, pp. 718–741, July 1989.

[6] B. Joe, “Construction of three-dimensional Delaunay triangulations
using local transformation,” Computer Aided Geometric Design, vol. 8,
pp. 123–142, 1991.

[7] J. R. Shewchuk, “Delaunay refinement mesh generation,” Ph.D. disser-
tation, Department of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1997.

[8] R. Lohner, “Generation of three-dimensional unstructured grids by the
advancing front method,” in Proceedings of the 26th AIAA Aerospace
Sciences Meeting, Reno, Nevada, 1988.

[9] T. Barth and D. Jesperson, “The design and application of upwind
schemes on unstructured meshes,” in Proceedings of the 27th AIAA
Aerospace Sciences Meeting, Reno, Nevada, 1989.

[10] D. J. Mavriplis, “An advancing front Delaunay triangulation algorithm
designed for robustness,” ICASE, Technical Report 92-49, October 1992.

[11] R. Lohner, “Progress in grid generation via the advancing front tech-
nique,” Engineering with Computers, vol. 12, pp. 186–210, 1996.

[12] P. R. Cavalcanti and U. T. Mello, “Three-dimensional constrained
Delaunay triangulation: a minimalist approach,” in Proceedings of
the 8th International Meshing Roundtable. Lake Tahoe, CA: Sandia
National Laboratories, October 1999, pp. 119–129.

[13] U. T. Mello and P. R. Cavalcanti, “A point creation strategy for
mesh generation using crystal lattices as templates,” in Proceedings of
the 9th International Meshing Roundtable. New Orleans, LA: Sandia
National Laboratories, October 2000, pp. 253–261.

[14] L. Stocco and G. Schrack, “Integer dilation and contraction for quadtrees
and octrees,” in Proceedings of the IEEE Pacific Rim Conference on
Communications, Computers, and Signal Processing, 1995, pp. 426–
428.

[15] N. P. Weatherill, “Delaunay triangulation in computational fluid dynam-
ics,” Computers and Mathematics with Applications, vol. 24, no. 5/6,
pp. 129–150, September 1992.

[16] N. P. Weatherill and O. Hassan, “Efficient three-dimensional Delaunay
triangulation with automatic point creation and imposed boundary con-
straints,” International Journal for Numerical Methods in Engineering,
vol. 37, pp. 2005–2039, 1994.

[17] J. Ruppert, “Results on triangulation and high quality mesh generation,”
Ph.D. dissertation, Department of Computer Science, University of
California at Berkeley, Berkeley, CA, 1992.

[18] C. Hazlewood, “Approximating constrained tetrahedralizations,” Com-
puter Aided Geometric Design, vol. 10, pp. 67–87, 1993.

[19] P. R. Cavalcanti, P. C. Carvalho, and L. F. Martha, “Nonmanifold
modeling: An approach based on spatial subdivisions,” Computer-Aided
Design, vol. 29, no. 3, pp. 209–220, March 1997.

[20] U. T. Mello and P. R. Cavalcanti, “A topologically-based framework for
simulating complex geological processes,” in Proceedings of the AAPG
Hedberg Conference-Basin Modeling. Colorado Springs, CO: American
Association of Petroleum Geologists, May 1999.

[21] L. Freitag and C. Olliver-Gooch, “Tetrahedral mesh improvement using
face swapping and smoothing,” International Journal for Numerical
Methods in Engineering, vol. 40, pp. 3979–4002, 1997.

[22] B. M. Klingner and J. R. Shewchuk, “Agressive tetrahedral mesh
improvement,” in Proceedings of the 16th International Meshing
Roundtable, Oct. 2007, pp. 3–23.

[23] L. R. Hermann, “Laplacian-isoparametric grid generation scheme,” J. of
the Eng. Mechanics Div. of the American Soc. of Civil Engineers, vol.
102, pp. 749–756, 1976.

[24] L. Freitag, M. Jones, and P. Plassmann, “A parallel algorithm for mesh
smoothing,” SIAM J. Sci. Comput., vol. 20, no. 6, pp. 2023–2040, 1999.

[25] J. C. Cavendish, D. A. Field, and W. H. Frey, “An approach to automatic
three-dimensional finite element mesh generation,” Int. J. Numer. Meth.
Eng., vol. 21, pp. 329–347, 1985.

[26] D. Talmor, “Well-spaced points for numerical methods,” Ph.D. disser-
tation, Carnegie Mellon University, Pittsburgh, August 1997, cMU CS
Tech Report CMU-CS-97-164.

[27] L. P. Chew, “Guaranteed-quality delaunay meshing in 3d (short ver-
sion),” in SCG ’97: Proceedings of the thirteenth annual symposium
on Computational geometry. New York, NY, USA: ACM, 1997, pp.
391–393.

[28] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H.
Teng, “Sliver exudation,” in SCG ’99: Proceedings of the fifteenth annual
symposium on Computational geometry. New York, NY, USA: ACM,
1999, pp. 1–13.

[29] H. Edelsbrunner, X.-Y. Li, G. Miller, A. Stathopoulos, D. Talmor, S.-
H. Teng, A. Üngör, and N. Walkington, “Smoothing and cleaning up
slivers,” in STOC ’00: Proceedings of the thirty-second annual ACM
symposium on Theory of computing. New York, NY, USA: ACM,
2000, pp. 273–277.

[30] M. Křı́žek, “On the maximum angle condition for linear tetrahedral
elements,” SIAM J. Numer. Anal., vol. 29, no. 2, pp. 513–520, 1992.

[31] J. R. Shewchuk, “What is a good linear element? interpolation, con-
ditioning, and quality measures,” in In 11th International Meshing
Roundtable, 2002, pp. 115–126.

[32] B. Joe, “Construction of three-dimensional improved-quality
triangulations using local transformations,” SIAM Journal on Scientific
Computing, vol. 16, no. 6, pp. 1292–1307, 1995.

[33] U. T. Mello and P. R. Cavalcanti, “A topologically-based framework
for three-dimensional basin modeling,” in Multidimensional Basin Mod-
eling, S. Düppenbecker and R. Marzi, Eds. Tulsa: AAPG/Datapages
Discovery Series No. 7, 2003, pp. 255–269.

109109109

