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Abstract—The projection of a photographic data set on a 3D model is a robust and widely applicable way to acquire appearance

information of an object. The first step of this procedure is the alignment of the images on the 3D model. While any reconstruction

pipeline aims at avoiding misregistration by improving camera calibrations and geometry, in practice a perfect alignment cannot always

be reached. Depending on the way multiple camera images are fused on the object surface, remaining misregistrations show up either

as ghosting or as discontinuities at transitions from one camera view to another. In this paper we propose a method, based on the

computation of Optical Flow between overlapping images, to correct the local misalignment by determining the necessary

displacement. The goal is to correct the symptoms of misregistration, instead of searching for a globally consistent mapping, which

might not exist. The method scales up well with the size of the data set (both photographic and geometric) and is quite independent of

the characteristics of the 3D model (topology cleanliness, parametrization, density). The method is robust and can handle real world

cases that have different characteristics: low level geometric details and images that lack enough features for global optimization or

manual methods. It can be applied to different mapping strategies, such as texture or per-vertex attribute encoding.

Index Terms—Computer graphics, image color analysis.

Ç

1 INTRODUCTION

THE acquisition of the appearance properties of real objects
is a broad and complex field of research in the Computer

Graphics and Computer Vision context. The main goal is to
produce extremely accurate and realistic 3D models,
encompassing both shape and color. While the acquisition
of geometry has been greatly improved over the last few
years, the acquisition and visualization of surface appear-
ance properties has not yet reached such a mature level. Even
if methods to treat small objects, specific materials and
simple BRDF models have been proposed, no general
approach can handle complex geometries with varying
reflectance properties, especially when flexibility, portability
on the field, and robustness is needed.

When confronting these situations, a popular, simple,
and robust alternative is adding to the 3D shape a color
information obtained by the mapping and back-projection of
a set of photographs. Relying on an additional photographic
data set is needed because, in most cases, the color
information acquired by the acquisition devices is not
accurate enough. These approaches generally start by
computing an image-to-geometry registration, followed by an
integration strategy. The first phase deals with the computa-
tion of the camera’s intrinsic and extrinsic parameters, i.e.,
the information needed to compute the inverse projective
transformation of the photos. On the other hand, the

integration phase manages how to combine the many color
samples available for each surface point. Most methods use
some sort of weighting or interpolation of the samples to
produce the final color.

Unfortunately, computing 100 percent correct image-to-
geometry registration is never possible in the real world, due
to several factors, such as: the specific geometrical features
of the 3D model (the surface might lack representative
geometric features to be matched with visual features in the
image); the 3D model may not be sufficiently accurate due
to poor scanning, or excessive simplification/smoothing
introduced in the postprocessing phase; and/or the image
may be distorted, cropped or there may be shadows/
highlights which interfere with the image-to-geometry
registration. Consequently, global optimization methods
are unable accurately align all features simultaneously,
leading to blurry details or the so-called “ghosting” effect
(see Fig. 1) after color projection. This kind of artifact stands
out significantly in the case of small and sharp color
features, especially when the color detail is in areas with
low geometric information (i.e., painted vases or nearly flat
surfaces). Cultural Heritage is a context where many of
these complex cases arise, since the artworks are usually
decorated, and have densely textured details (grain of the
material, deteriorations, scratches, or loss of material/paint,
etc.). The problem is made more pressing by the require-
ments of the end users: if the 3D medium is going to be the
main form of representation, we need to be able to produce
3D models with the same quality as digital photos.

This paper proposes a method for correcting small
inaccuracies introduced in the image-to-geometry registra-
tion. Rather than solving the problem in a global manner by
computing a new, congruent global registration over all
images (which is sometimes impossible), our solution is
based on a local warping of the source images aimed at
improving the sharpness of the mapping, in a similar
fashion to methods proposed for range maps registration
[1]. This local intervention can correct small misalignment
artifacts while, at the same time, preserves the initial
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registration at a higher level. An optical flow strategy is
used to drive the warping of the images before projection,
in order to produce an accurate and unambiguous map-
ping. Even though optical flow is a well-known technique,
it has been mostly applied in the fields of motion tracking
and reconstruction from stereo, where little scene variation
between consecutive images is assumed, i.e., small dis-
placements of the camera or the objects. In contrast, in this
study it is used in a different scenario, where the input
images are obtained from a set of cameras with significant
position and orientation variation. Our correction algorithm
also handles cases where several images map onto the same
geometrical point (i.e., where continuous warping among
several images is needed).

The main contributions of our method are:

. robustness in terms of correcting misalignments and
preserving sharpness of small-scale details in colored
3D models, able to manage applications requiring a
large number of images and very dense models;

. easy integration with state-of-the-art methods based
on color projection and integration;

. the application of optical flow approaches to accu-
rately drive the image-to-geometry projection over a
set of images taken from a very sparse location,
complied with specific input conditions that usually
not accounted for in the optical flow literature;

. a method to combine multiple warping fields
which exploits “importance” relationship between
input to images, able to build a globally coherent
color information.

2 RELATED WORK

Our method deals with two important fields of research:
color acquisition and projection, and optical flow. A brief
overview of the most important studies and of the main
issues will be presented. Additional references to other
related fields of research can be found in other sections of
the paper.

2.1 Optical Flow

The optical flow between two images is usually computed as
a set of displacement vectors between corresponding pixels.
One of its most prominent applications is motion tracking,
where the images define a sequence in time and the flow
field represents the image velocity. It has also been used in

other areas such as image-to-image registration, template
matching, video compression, and image morphing. In fact,
whenever a pixel correspondence between images must be
retrieved, optical flow methods may be applied.

Even though it has been a very active area of research
over the last few decades, there is still no single optimal
solution, since each problem is based on a different set of
assumptions and requirements. Some important problems
tackled by researchers have included the management of
large deformations, rotations, illumination changes, and
large displacements. In each case, some variables are
restricted in order to bound the complexity of the algorithm
to a practical scale. For example, many algorithms are based
on the assumption of a global smooth field or constant pixel
brightness between images: the data conservation constraint [2]
assumes that the intensity is conserved for small time steps.

There are many approaches to compute the optical flow,
and what type works best depends mostly on the applica-
tion. In the context of image-to-geometry alignment, optical
flow strategies were used in some specific settings, such as
capturing real people under controlled illumination with a
video camera [3], [4]. In another work Pulli et al. [5]
employed optical flow to align range images with color
information using a minimization approach to calibrate the
camera parameters for each range map. Differently from
many applications, a global matching solution is not
required in our settings and, even more, smoothing should
be avoided as to not cause blurring in the final model. Even
though the contribution of this work is not a novel optical
flow method by itself, in Section 3.1 we further discuss
some strategies that handle well our test cases.

2.2 The Camera Calibration Problem

The first step in the color projection pipeline is image
registration, since in most cases the camera parameters
associated with each image are not known in advance.
Several automatic [6], [7], [8], [9] and semiautomatic [10]
methods for image-to-geometry registration have been
proposed. They are mainly based on an analysis of the
geometric features of the model (e.g., silhouette and
orthogonality), or on some input given by the user (2D-to-
3D correspondences). Although these solutions can be
extremely accurate, the quality of the results is influenced
by several factors:

. The geometric properties of the model. If the model
lacks peculiar geometric features, both the automatic
and semiautomatic methods might not have enough
data to provide an accurate solution.

. The quality of the 3D model. If the 3D model has been
generated with an insufficiently accurate method
(e.g., low cost scanners, manual modeling, or photo-
grammetry), the geometry may be different from that
depicted in the images, so that a precise estimation of
the camera parameters becomes almost impossible.

. The use of a camera model. All the above cited
methods attempt to fit a perspective camera model.
However, this classic camera model does not always
fit the real case perfectly: this can happen for some
particular cameras, or when images have undergone
some kind of processing, such as cropping.

In these cases, it is often not possible to produce perfect
results, which leads to ghosting effects and discontinuities.
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Fig. 1. An example of “ghosting” effect due to small inaccuracies in
image registration.



2.3 Color Acquisition and Visualization

The most correct way to represent the material properties of
an object is to describe them through a reflection function
(i.e., BRDF), which attempts to model the observed scattering
behavior of a class of real surfaces. A detailed presentation of
its theory and applications can be found in Dorsey et al. [11].
Unfortunately, state-of-the-art BRDF calculation approaches
rely on controlled and complex illumination setups [12], [13],
[14]: this limits their application in the context of complex
scanning projects (big artifacts and on-the-field acquisitions,
such as those performed in museums). Other approaches,
based on simplified assumptions [15], [16] are also difficult to
apply in more general cases.

A less accurate, but more robust, solution is the direct use
of images to transfer the color to 3D surfaces. In these cases,
the apparent color value, as sampled in digital photos, is
mapped on the digital object’s surface by registering these
photos w.r.t. the 3D model (by estimating the camera
parameters), and then applying an inverse projection. In
addition to other important issues (briefly cited in other
sections of the paper), such as the image registration and
how to store color information, there are numerous
difficulties in selecting the correct color when multiple
candidates are in different images. Some of these are: how to
deal with discontinuities caused by color differences
between photos that cover adjacent areas, and how to reduce
illumination-related artifacts, i.e., shadows, highlights, and
peculiar BRDF effects. This is also true when it’s possible to
use the color acquired directly by 3D scanners [17].

To solve these problems, one group of methods selects, for
each part of the surface, a portion of a representative image
following a specific criterion (in most cases, the orthogon-
ality between the surface and the view direction [18], [19],
[8]). However, artifacts caused by the lack of consistency
between overlapping images are visible on the borders
between surface areas that receive color from different
images. These can be partially removed by working on the
border between two images [18], [19], [8]. Also aiming to
solve this issue, Chuang et al. [20] employed color gradients
to seamless reconstruct colored surfaces from scans.

Another group “blends” the contribution of all the images
by assigning a weight to each one or to each input pixel (this
value expresses the “quality” of its contribution), and
selecting the final surface color as the weighted average of
the input data, as in Pulli et al. [21]. The weight is usually a
combination of various quality metrics [17], [22], [23]. In
particular, Callieri et al. [24] presented a flexible weighting
system that can be extended in order to accommodate
additional metrics. These methods provide better visual
results, and their implementation permits very complex data
sets to be used, i.e., hundreds of images and very dense 3D
models. Nevertheless, the blending approach produces
undesirable ghosting effects when the starting set of
calibrated images is not perfectly aligned. In the case of the
first group of methods, this kind of artifact is visible only
along the frontier of regions mapped to different images.

Another issue, which is common to all the cited methods, is
the projection of lighting artifacts on the model, since the
lighting environment is usually not known in advance. In
order to correct (or not project) the lighting artifacts, two
possible approaches include the estimation of the lighting
environment [25], [26], and the use of easily controllable
lighting setups [27].

2.4 Image Warping in Color Mapping

Warping input images, in order to obtain a better color
projection from a set of photos on a 3D model, is an idea
discussed in some recent papers. However, in the literature,
most of the works are focused toward 3D models built from
multiview stereo matching and structure-from-motion ap-
proaches. Hence, the data to be managed are composed of a
quite simple geometry and the same photographic data set
used to generate it. Our aim is to deal with the more general
case with an arbitrary 3D model and photographic data set.

In Harmonised Texture Mapping [28], Takai et al. first
modify the geometry according to the texture inconsistency,
obtaining a simpler triangulation where it is easier to define
warp fields to reduce image misalignments. Then, using
view-dependent texture mapping, they combine the ob-
tained warp fields for the current viewpoint according to
the view angle. The results are nice, but a globally valid
color mapping is not produced.

Aganj et al. [29] use, as a starting point for the image
warping, the same set of points used for the stereo
matching. The matched points are reprojected onto the
surface, each defining a warp direction on the images.
These directions are then combined in each image using a
thin-plate spline to minimize warp discordance. Input
images are warped statically using the resulting field.

Gal et al. [30] also consider geometries obtained by
multiview stereo matching and work at triangle level,
employing a multilevel optimization strategy to integrate
the different warp directions. Each triangle is then textured
using a single photo, smoothing a very small area of border
between different photos. Since a smooth warp field is not
available, it is not possible to exploit the redundancy in the
overlapping images, which could have been used to better
smooth the transition. Moreover, working at triangle level
requires a small, topologically clean geometry, which is not
the case in the more general scenario.

The Floating Textures system [31] uses optical flow to
obtain warp data between images, and then combining the
warp fields linearly in the space of the current viewpoint. In
this way it is possible to work in realtime. Again, the linear,
view-dependent combination of warp fields prevent the
creation of a globally valid texture. Besides the different
nature of data set, our approach proposes a more elaborate,
but still easily implementable, method to combine the
discordant warp fields produced by the optical flow, based
on the local importance of the input images. Using this
method, it is possible to combine the different warp fields
such that the resulting color mapping is globally coherent,
overcoming the limitation of a single viewpoint.

3 THE CORRECTION ALGORITHM

The goal of our system is to fulfill three main requirements:

. Generality. The local misalignment problem can be
approached in different ways, but very few guarantee
wide applicability. For example, global camera
optimization methods may not work in the case of
low quality data sets (as detailed in previous section),
and local per-triangle warping [18] can only be used
on small meshes with a good surface parameteriza-
tion. We need a method which is independent of the
properties of the 3D mesh, i.e., mesh resolution or
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geometry quality/accuracy, and which can work
with camera calibrations provided by different tools.

. Scalability. Current practical 3D geometry and color
acquisition projects produce very dense models and
hundreds of images. We believe it is possible to
implement the color data processing in an out-of-
core fashion, in order to deal with very large
amounts of raw data.

. Automation. Human intervention, such as fine tuning
of camera calibration or local blending correction (or
even local texture manipulation via image editing
tools), is only possible in very simple cases. The
correction system must not require user intervention.

The basic idea of the algorithm is to locally warp input
images in order to minimize small-scale misalignment of
high frequency color features, thus obtaining a sharper
color mapping. The proposed solution has two components:
1) a method to determine the image warps necessary to
obtain a coincident 2D-to-3D color projection and 2) a
strategy to combine the resulting image warps to obtain a
coherent warping to be used in color mapping.

Instead of calculating the warp directions on a limited set
of points, we opted to use a more dense search method,
based on Optical Flow. Since the relative size of photo-
graphic misalignment may be very small, working at a
higher level may not be enough to cope with fine details.
Moreover, we believe that, by selecting the correct flow
calculation it is possible to obtain a warp field which is
globally smooth enough to produce continuous result but
also locally sharp enough to precisely correct higher
frequency color features.

Each overlapping pair of photos, however, result in a
warping field which is generally not coherent with the other
fields; in order to generate a color mapping, it is necessary
to combine multiple warp fields. Our aim is to produce a
globally coherent color mapping. Hence, we need a way to
combine the warps all over the geometry, without relying
on view-dependent texture. Instead of trivially combining
the warp fields using linear interpolation or using numer-
ical methods to minimize the combination error, we choose
to locally weight the different fields using quality metrics.
By evaluating the local quality of the photos, it is possible to
determine which image is more representative for a certain
area of the mesh, and to locally warp the other contributions
in order to be coherent with the dominant one. The
smoothness of the transition between image dominance
derived by the weight scheme ensures a continuous warp
interpolation. Additionally, since the warp combination is
continuous, we can still fully exploit data redundancy
between the photos, effectively blending overlapping areas
to minimize inconsistency.

The color mapping is then carried out considering, in
each point, the local importance of the contributing input
images, and interpolating the warp fields according to their
relative quality. The result is a global, view-independent
color mapping which preserves high frequency features
and color continuity.

3.1 Computation of Optical Flow between Image
Pairs

Our application makes no assumption about camera
positions, and usually deals with very large displacements.
The only requirement to compute the correspondence is

that the two images contain mutually overlapping regions,
which are the regions we are interested in.

In contrast, a common assumption of most optical flow
applications is that the camera position has a small variation
betweentwo images, or that the elements of the scene undergo
small movements between subsequent frames. To establish
an initial condition that can be handled in a straightforward
way, we start by estimating the camera parameters for each
image and the 3D model. Then, for every image pair (Image1
and Image2 in Fig. 2) and using the associated camera
parameters, Image2 is projected onto the 3D model, and
reprojected back on the camera plane of Image1 (see Fig. 2
right) [32].Givenaninputsetof n images,amaximumnumber
of nðn-1Þ projections need to be generated. In practice this
number is much lower, since each image usually has a
consistent overlap with no more than 4-5 other images.

As aforementioned, since a global perfect alignment is
not always possible, the images are not perfectly super-
imposed when projected onto the model. One important
contributing factor is the different samplings of color and
geometry, which, as noted by Pulli et al. [5], is an inherent
issue. Even though these discrepancies are generally only of
a few pixels, which is an ideal initial condition to compute
an accurate optical flow, there are still many issues, such as
aliasing and blurring or differences in lighting, which might
be present in the original set of images, or introduced
during the projection phase.

Since it is very difficult to handle all cases at the same
time, we have chosen solutions that provide a satisfactory
result for a wide range of input sets with regards to the
ambient conditions and camera settings. We tested three
different approaches: a brute force template matching and
its hierarchical variation (both implemented with CUDA),
and the GPU implementation of Brox et al. [33] provided by
the Floating Textures system [31].

The first two strategies do not use a minimization
strategy to solve the objective function, but apply template
matching in the following way:

qðIiðpÞ;�xÞ ¼
P

c¼0;1;2

P
t fðp;�t; cÞ

2 þ �gðp;�t; cÞ2
h i

P
jtj ;

where

fðp;�t; cÞ ¼ Iiðpþ�tÞc � Ijðpþ�xþ�tÞc;
gðp;�t; cÞ ¼ ðIiðpþ�tÞc � �IicÞ

� ðIjðpþ�xþ�tÞc �IjcÞ;
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Fig. 2. Left: Input Image1. Center: Input Image2. Right: The projection of
Image2 on the plane of Image1.



where Ij is the search space in the target image, IiðpÞc is one
of the color channels of a pixel from the source image, �Iic is
the average per color channel inside the template centered
at p, and �x and �t are, respectively, the displacements of
the search space and inside each template. The final flow for
a pixel is given by the minimum value of q inside the search
region. For our tests, we set � ¼ 2 and the search space and
matching template, respectively, to 412 and 152 pixels, i.e.,
the maximum pixel displacement is 20 units in a each
direction. For the hierarchical method, we reduce the search
and matching templates to 152 and 52 pixels, respectively.

Although the source and target images may initially seem
very similar, they present many high frequency variations,
and create a deviation in image sharpness (see Fig. 4). This
problem tends to be aggravated by warping methods—as
already noted by Steinbruecker et al. [34]—since fine details
are lost in coarser levels and, consequently, cannot be
matched at the corresponding scale. Fortunately, the
projection limits the flow to only a few pixels and allows
us to use only a few levels of the hierarchy; in our tests we
limited the maximum level to three.

Analyzing the visual results using the three methods, all
data sets were handled in similar ways, although each
method treats some particular regions better than others.
Even though the Floating Texture method may achieve
more precise results, it depends in some degree on fine-
tuning the parameters for each specific input. The template
matching strategies, on the other hand, were able to handle
all tested data sets with the same configuration. Fig. 3
illustrates the difference between the three methods with a
detail of the vase model.

It is important to point out that even though we are not
giving shadows and highlights any special treatment, when
the diffuse component predominates, which is indeed true
for our tested sets, these issues can be properly treated. An
example is the shadow in the sample images of the Painted
Cave data set (see Fig. 10 top). In fact, the same phenomenon
was already observed by Theobalt et al. [3], however, we
believe that no single optical flow method will handle
appropriately all possible inputs, thus strong illumination
effects, such as specular highlights, might mislead the flow.
However, Fig. 5 shows an example where noise is auto-
matically removed during optical flow calculation.

Disregarding which approach is used, the optical flow
operation produces a map for each projection of a source
image onto another image’s camera space. In order to
continue with the image correction algorithm, it is necessary

to “retro-project” the flow, i.e., bring it back to the camera
space of the source image. This is carried out by first
applying the flow to the projected image, and then
projecting back the displaced pixel to its original camera
space. The difference between the new and the original
pixel positions defines the correction displacement to be
applied to the image.

3.2 Using the Optical Flow

Once the optical flows for all the mutually overlapping
image pairs have been calculated, they are used to
coherently project the color information.

Let us start with some notation. We have a set of n
images I1; . . . ; In registered over a 3D model and let’s
assume that we know how to compute the “real” color of
each point po of the mesh as a weighted blend [24] of the
colors of all the images involved

cðpoÞ ¼
P

j Ið�jðpoÞÞBjð�jðpoÞÞP
Bjð�jðpoÞÞ

;

where�i; ðpoÞ is the inverse camera projection that, given a 3D
point po in object space, provides its 2D projection onto the
image Ii. Analogously,��1

i ðpiÞ is the direct camera projection,
which projects a 2D point p1 on a 3D model. In addition,
Bjð�jðpoÞÞ is a function that associates each point with a
blending weight. To find out the relation between corre-
sponding points on different images we use the  i;jðpiÞ
function

 i;jðpiÞ ¼ �jð��1ðpiÞÞ;

that computes where the point pi from image Ii falls on
image Ij. With IiðpÞ we denote the pixel at location p over
the ith image. If there were no color variations, errors, and
ignoring occlusions we would have

IiðpiÞ ¼ Ijð i;jðpiÞÞ:

Let us now introduce the flow function, that we computed
for each significant pair of images (e.g., for each image pair
that has a significant overlap in object space). The result of
the flow computation between each pair of images i; j is a
warping function Wi;j such that

IiðpiÞ � IjðWi;jðpiÞÞ:

In other words, the warping Wi;j finds the corresponding
position of a pixel of image i on image j. Note that the
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Fig. 3. Left: Brute force method. Center: Hierarchical template matching. Right: Floating Texture’s optical flow implementation [31]. Note how even
though the third method better preserves the borders (top of the vase), the patterns in the center of the figure are sharper with the first two methods.



warping functions are generally not invertible, i.e., usually
Wi;j 6¼W�1

j;i due to occlusions and discontinuities. We
define the displacement generated by the warping function
as �i;jðpiÞ; so that

�ijðpiÞ ¼WijðPiÞ �  i;jðpiÞ;
WijðPiÞ ¼  i;jðpiÞ þ�i;jðPiÞ:

Fig. 6 shows an example of our notation. In practice, the
warping finds the necessary � in order to correct the errors
due to the nonperfect correspondence between the digitally
scanned model and its real shape (captured by photos).

To coherently apply the warping function on the whole
surface in a consistent way we have to choose some base
reference system (all the warping functions denote relative
movements). We assume that for each point p0 of the digital
scanned surface of the object, we know which images are
projecting something on that point and that we have a
scalar scoring value QiðpoÞ that tells us the best images
projecting on it; we used the scoring value calculated by the
system proposed by Callieri et al. [24]. This score is basically
the product of several, normalized per-pixel quality values.
Some of the basic quality are quite straightforward, such as
the view angle, distance from the sensor, distance in image-
space from photo borders, and depth discontinuities (inner
silhouettes). Other metrics can be combined, such as image
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Fig. 4. Sequence of images from the flow calculation of the Louvre Vase. Top row: details of original image (target), projected image (source), and
target image warped to source’s plane using the flow. Bottom row: detail of the correspondent optical flow, entire optical flow using the first method,
projected image, and color code for flow directions. Note that along the border of the vase the flow becomes highly irregular specially due to the low
sampling quality of projected images in that region; however, this part is usually not used for blending since it obtains low scores.

Fig. 5. Sequence of detail images from the flow calculation of the Painted Catacomb. From left to right: original image (target), projected image
(source), target image warped with flow, and the flow field. Note that the flow is also able to remove noise (inside the black square in evidence) from
the original image. The flow pattern indicates that there is not only a translation between the images, but also a radial distortion possibly caused by
the camera lenses or image projections.



sharpness and custom-made masks. The use of a product to
combine the weights ensures that zeros are conserved.
Please refer to the paper for further details. This scoring
mechanism induces a partition V 1 ¼ fV 1

1 ; . . . ; V 1
n g of the

mesh into regions, such that V 1
i is the portion of the mesh

where the image Ii has the highest score. For each region,
we use the best image Ii as a reference and, when blending,
warp the other images to the space of Ii

CiðPoÞ ¼
P

j IjðWi;jð�iðPoÞÞ � BjðWi;jð�iðpoÞÞP
BjðWi;jð�iðpoÞÞ

:

In other words, for each image Ij, instead of directly using
the pixel Ijð�jðpoÞÞ, we use i ts warped image
IjððWi;jð�iðpoÞÞ. For the sake of readability, we define the
shorthand notation

�ijðpoÞ ¼Wi;jð�iðpoÞÞ;

which denotes the fact that, when we need a pixel of Ij for
blending in the space of Ii, we need to go through the
warping function Wi;j. The blending function can now be
written as

CiðPoÞ ¼
P

j Ijð�ijðpoÞÞ �Bjð�ijðpoÞÞP
Bjð�ijÞðpoÞÞ

:

Unfortunately, as shown in Fig. 8 (middle), this approach
creates seam artifacts on the boundary between different
regions. In fact, for each region, all warpings are based on a
different base image, i.e., on the boundary between regions
V 1
i and V 1

j , on one side pixels of image Ii are left unmoved
and pixels of image Ij are warped by �i;j, while on the other
side pixels of Ij are fixed and those of Ii are warped by �j;i.
It is possible to correct this issue under the assumption that
the warping function is continuous and bijective

�i;jð�iðpoÞÞ ¼ ��j;ið�jðpoÞÞ;

and computing for each region, a continuous prewarping
�ijk ðpÞ of all the involved images, so that it counter balances

boundary differences (see Fig. 8 (bottom)).

The image scoring mechanism is used to make a further
sub-partitioning of the surface. Let V 2 ¼ fV 2

1;1;...;V
2
i;j;...;V

2
n;ng be

the partition of the mesh into regions such that V 2
i;j is the

portion of the mesh where Ii and Ij are the exactly two best
images that project onto that region. For each region V 2

i;j, we
consider �ðpoÞ as a weighted distance from the boundary
shared with the region V 2

j;i. Fig. 7 illustrates this kind of
partitioning. Now we can define the warping of a pixel from
Ik, to the region defined by the two best images Ii and Ij, by

�i;jk ðpo; �Þ ¼ �kðpoÞ þ�i;kðpiÞ � ð1� �Þ �
�i;jðpiÞ

2
;

where � is a value that is equal to 0 on the boundary
between the two regions and less than 1 elsewhere. This
alpha is calculated as the pixel distance, in the dominant
image space, divided by the maximum size of the over-
lapping area (this value may be calculated at the beginning,
while computing weights and optical flow, or imposed as a
fixed threshold to limit the extent of warp blending).

For the points far from the border (where � is one) this
equation simplifies to the previous case, while on the
boundary between two regions V 2

i;j and V 2
j;i (where � is

zero), it computes a warping equivalent to that of the
adjacent region.

The � function does not affect the accuracy of the
matching done by the flow based warping, because in the
blending equation it modifies all the image accesses in a
consistent way. It can be considered as a prewarping that
deforms the image space in the same way for each point of
each region.

Nonetheless, warping is generally not bijective and the �
are not antisymmetric. In most cases, this is due to occlusions
that lead to discontinuities in the mapping process. It thus
becomes impossible to achieve a continuous warping, and so
we compromise with the average of the � involved

�i;jk ðpo; �Þ ¼ �kðpoÞ þ�i;kðpiÞ � ð1� �Þ �
�i;jðpiÞ ��j;iðpjÞ

4
:

The above approach could cause some other minor
discontinuities in the boundary between regions V 2

i;j and
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Fig. 6. The notation used to denote correspondence between (warped)
points and images.

Fig. 7. We partition the surface of the mesh according to an image
scoring value defining the regions V 1

i , where each image Ii is the best
one. The region is further subdivided in subpartitions V 2

i;j, where the
images Ii, Ij are, respectively, the first two best options.



V 2
i;k. However, these discontinuities are hardly noticeable

and can be removed by applying the previous blending
approach to a partitioning V 3

i;j;k according to the first three
most important images i; j; k. On such a partition, it is
possible to blend the warping vectors � based on
barycentric interpolating coordinates centered on the “re-
gion corners,” where three regions share a pair of indexes.
While such an approach is more theoretically correct, we
found the previous technique simpler, sufficient, and more
practical from an implementation point of view.

4 RESULTS

We applied our method on a number of test sets of
different qualities and sizes. In this section, five examples
are shown and analyzed, all were computed using the
second optical flow calculation method (hierarchical tem-
plate matching), which proved to be the best trade-off
between speed and accuracy.

The camera parameters for the images to be aligned were
obtained in several different ways, but the projection of
color information was performed by extending the blending
approach proposed by Callieri et al. [24]. This system
proved to be extremely flexible and scalable, and since our
proposed technique is not dependent on any global
optimization, it can be easily integrated and used even on
complex cases, where dense 3D models and hundreds of
images are used.

The first test was performed on the 3D model of an
ancient vase, made up of a 5 million triangle model and 12
images. In this case, the geometry was acquired using a
triangulation scanner, hence, it was extremely accurate. The
images were acquired under a not ideal lighting setup and
were of medium quality.

The images were aligned on the model using a
semiautomatic approach [10]. Fig. 9 (first row) shows that
the use of the correction optical flow preserves the detail in
the decorations of the vase: visible ghosting artifacts are
completely removed, and the resolution of the color
information is almost the same as the original images (see
also Fig. 8).

The second test case was another vase from the Louvre
collection (inv. A 316). While the quality of the nine images
was extremely good, the 3D model had several inaccuracies,
especially around the handle and the lip, which are crucial
in order to obtain an accurate image alignment. The
alignment quality obtained using the silhouette based
approach [8] was thus not good enough to preserve the
quality of the starting images. Our method managed to
remove the annoying ghosting effect on the colored model
(Fig. 9 (second row)).

The third test (Fig. 9 (third row)) involved a 3D model
of a prehistoric skull, obtained using 3D scanning, on
which 12 images were mapped. In this case both the model
and the images exhibit high accuracy, but the alignment is
not accurate enough to avoid blurring. The use of our
method brings it to a visible improvement. The fourth test
regarded a portion of a painted cave, acquired at high
resolution. The images were not acquired under optimal
lighting conditions, but the main issue was in the
quasiplanar shape of the geometry, which prevented an
accurate estimation of parameters of the camera. The
misalignments shown in Fig. 10 (first row) were solved by
our method.

In the fifth test set, the geometry was generated using a
commercial system which starts from images [35]. In
addition, the camera parameters associated with the six
images were extracted from the internal data of the system.
This meant that it was impossible to correct any inaccuracy.
In fact, the color projection produced blurry details, which
were corrected by our system (see Fig. 10 (second row)).

In conclusion, the test sets presented above showed that
the correction system can improve the quality of the colored
model in a variety of cases. The method is compatible with
both per-vertex and texture color encoding, so that it can be
applied on both high and low-level detail 3D models. Table 1
shows a summary of the features of the data sets used. The
optical flow was calculated only on the projected images on
which the overlapping pixels were more than 10 percent of
whole image: hence, the fourth column is an indirect
measure of the overlap between the projected images.

Finally, the values in the last three columns show the
computational time needed to calculate the optical flow for
the presented approaches: Brute Force Templates (BF),
Hierarchical Templates (HT), and Floating Textures (FT).
Time values are influenced not only by the image
resolution, but also by the peculiar nature of the data set
(the amount of overlap between images).

While solving the problem of small misalignments and
subsequent blurring, the proposed method inherits some of
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Fig. 8. Top: a portion of one of the images used for projection. Middle:
the colored model obtained using optical flow correction, without taking
into account the boundary between images (visible artifacts in the red
boxes). Bottom: the colored model obtained using a continuous
prewarping function.



the limitations of the image projection approaches. First of
all, if the misalignment between images is very big (tens of
pixels) it could be impossible to calculate the flow. It could
be thought of trying different flow bands to adapt to this,
but in the case of repeating high frequency features this
could bring to further inaccuracies. The presence of lighting
artifacts (i.e., specular highlights, shadows) can mislead the
flow calculation. Finally, if the quality of images is
extremely low, or there are severe differences in lighting
conditions, flow calculation can be extremely difficult.

Nevertheless, these drawbacks are shared with almost all
of the state-of-the-art approaches in the field.

5 CONCLUSIONS AND FUTURE WORK

We have presented a system to correct misalignment
artifacts in an image-to-geometry projection procedure,
which otherwise would lead to ghosting artifacts in the
final 3D colored model. Unlike previous methods, we made
no assumption about the existence of a perfect global
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Fig. 9. Three examples of color projection. For each row, a sample of the images, a rendering of the colored model without and with the flow
correction are presented.



alignment between the geometry and the images. Hence, we
performed a local optimization by warping the overlap
between images to create a consistent mapping.

We made use of optical flow techniques that can handle
many issues encountered in real cases. It is performed over
pairs of prealigned images by using the underlying
geometry to project each image onto the plane of the
others. The resulting flow is then retroprojected and used
together with a partition of the space into best fitting
images, to perform the local warps and the final blending.

We have shown, using different examples, that the
system can handle input data sets that do not possess ideal
characteristics for alignment, either because of issues in the
acquisition process, or due to inherited issues in the nature
of the models. Another advantage of our method is that it
scales well with the size of the input data, and is able to deal
with large models in term of the geometry, the number of
images in the set, and image resolution. Although we

showed the method in the context of color projection, it can

also be exploited in a number of other applications

(medical, restoration, 3D reconstruction from images)

which use registered images as an input.
We are currently integrating a measure of flow quality

with the blending function to better drive the final color

estimation. Furthermore, we are investigating how to treat

more drastic cases in terms of deviation in illumination

between images, and projection of shadows.
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Fig. 10. Two examples of color projection. For each row, a sample of the images, a rendering of the colored model without and with the flow
correction are presented.

TABLE 1
Overview of the Test Sets
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