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Abstract This paper proposes a methodology to texture
3D objects with low geometric features from sequentially
taken photos. These models pose a challenge to current
approaches since they are mainly driven by geometric
features—such as contours—that can be extracted from
the photographs and uniquely matched with the 3D model.
However, when dealing with certain types of objects, such
as vases or mechanical equipments, for example, it is not
uncommon to find cases where the geometric information is
insufficient.

Our method compensates for the lack of geometric fea-
tures by using a variation of a contour-based approach that is
guided not only by external contours, but also by the internal
ones extracted directly from the photos. To align the features
a custom-made optimization method is described that avoids
common convergence pitfalls encountered in this scenario.
In addition, pursuing a fully automatic solution, a linear ap-
proach based on feature matching is employed to generate a
first guess for the nonlinear optimization. The overall goal
is to facilitate an on-site registration process where the pho-
tos are taken in a sequential manner and aligned as they are
acquired.

Keywords Texture-to-geometry registration · 3D virtual
replica · High-resolution texture mapping · Least-squares
minimization

1 Introduction

Recently, the generation of 3D virtual replicas of real phys-
ical objects has received a great attention, and is becoming
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Fig. 1 An example of a model textured with our method: rendering
of the final model (top), the first three photos that were sequentially
registered (middle), and three other randomly selected photos that were
registered (bottom)

an incorporated technology in many fields. With recent 3D
scanners, it is possible to build high resolution models with
great fidelity for a broad variety of objects. Nevertheless, in
most cases, this process is still far from being fully auto-
matic, and may require a laborious manual effort depending
on the subject.

This is specially true when high resolution reflectance
properties, usually color, are required. In comparison to the
acquisition of geometry, precise color measurements is usu-
ally harder to acquire since it is more susceptible to ambient
conditions. Moreover, precise control of the illumination de-
mands complex setups, and in many cases—such as on-site
scanning campaigns—it is not possible at all. Even worst,
ideal light conditions for acquiring geometry are usually dif-
ferent than those for acquiring color.
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Since most digitalization equipments lack high quality
color registration embedded systems, the mapping of re-
flectance properties is usually carried out separately through
one of two methods: acquiring BRDFs or projecting pho-
tographs by calibrating the camera’s parameters. Even
though the former is known to achieve high-quality results,
the process still requires complex lab setups and expensive
apparatus. On the other hand, notwithstanding the relative
low cost of photographic equipments, most camera cali-
bration approaches demand a considerable amount of user
interaction, and there is no single procedure that can deal
robustly with a great variety of scenarios. This paper is in-
serted in this latter discourse.

We propose a method to texture models using a sequen-
tial approach, where the photos are registered as they are
acquired, i.e., in a “shoot and register” fashion (see Fig. 1).
This is an important resource during on-site digitalization
campaigns for many reasons: it provides an immediate view
of the photos’ coverage, as well as their quality, and avoids
future visits to the site to correct or complete missing re-
gions; in some cases, specially in the cultural heritage con-
text, a second chance to register the object’s appearance at
a given state might not be possible when it is undergoing
a restoration intervention, for example; finally, sometimes
registering a large number of photos at a later time might
present difficulties in identifying the corresponding regions
on the geometric model, specially when the photos are taken
from a close-up view for high resolution texturing, or the ob-
ject has many similar parts.

Another contribution of this paper is the description of
an approach to texture objects lacking significant geometric
features. Since most methods rely on geometric features of
the 3D model to find correspondences on the photos, they
are not suitable for a class of objects that lack these charac-
teristics, such as vases or mechanical pieces. We address this
problem with a new formulation of a nonlinear optimization
approach based on a smoothing function. In addition, we de-
scribe possible approaches to generate a starting position for
this iterative method.

A quick overview of the system is given in Sect. 3, fol-
lowed by detailed descriptions and formulations of the reg-
istration method (Sects. 4 and 5). Implementation details are
given in Sect. 6. Finally, we depict some results of models
textured with our approach in Sect. 7, and discuss some lim-
itations and conclusions of our work in the last sections.

2 Related work

The use of contours to drive the image-to-geometry registra-
tion is not new. Neugebauer and Klein [18] start with point
correspondences created by user interaction to set the ini-
tial estimation of the parameters, followed by a Levenberg–
Marquardt minimization approach. Their objective function

is a combination of these point correspondences, a contour-
based criterion, and an attribute-based one where informa-
tion from the object’s surface is compared to those of the
images.

Matsushita and Kaneko [17] compute the minimum set
of photographs that covers all the geometry. In fact, their
methodology takes the inverse direction of most related
works, where synthetic views are first generated using only
the geometry, and then photos are taken from viewpoints
matching as close as possible the camera locations of the
synthetic views. Since it is almost impossible to exactly
match them manually, an optimization algorithm minimizes
the contour errors during a final stage.

Another variation was proposed by Lensch et al. [13]. In-
stead of comparing distance from curves, they compare the
filled areas inside the contours by superposing them, which
they refer to as the silhouettes. A fast hardware XOR method
is computed over the overlapping projections to serve as the
error criterion, which in the case of a perfect match would be
zero. An optimization method is then run and restarted sev-
eral times to avoid local minima. The initial guess is given
by retrieving some information from the camera and by sam-
pling possible angular directions.

Liu et al. [14] proposed a method that combines a dense
point cloud from 3D range scan data, with a sparse point
cloud build from a 3D reconstruction of 2D photos. A sub-
set of the 2D photos are aligned with the dense set, followed
by the registration of the complete set using multiview ge-
ometry.

Corsini et al. [5] employ mutual information to develop
an error metric based on surface properties such as normals,
ambient occlusion and reflection directions. Even though
they achieve fast and high-quality results, their method is
only suitable for models containing high geometric details
to extract relevant illumination-based information.

In fact, this last remark is what mainly differentiates our
methods from the previous approaches, since all of them re-
quire significant geometric features to drive the optimiza-
tion.

After calibrating the camera parameters for all photos,
a method to blend the textures is required. Among these,
some treat the issue as a global optimization problem [10],
while others rely on a local texture blending [3]. Finally,
since it is not always possible to achieve a perfect result
with only the calibrations methods—in view of issues such
as lens distortion or imprecise geometry—a final warping
step might be necessary to correct small misalignments or
discontinuities due to illumination variations [1, 4, 7, 10].

3 Method overview

The input for the system is a set of photos and the 3D geom-
etry (see Fig. 2). For each target image, we start by setting
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an initial guess for the camera parameters using a manual or
automatic method based on feature correspondences.

From this point, a nonlinear optimization method is em-
ployed to retrieve the calibrated camera that matches as
close as possible the projected 3D model with the target im-
age. To this end, we require a measure to compare how good
a certain camera configuration is; here we use the distance
of each pixel of the projected model’s contours to the target
photo’s contours via a distance transform. However, instead
of using only external silhouettes, we also make use of the
already textured photos, i.e. the projected rastered source
image contains the pixels of the model’s outer contours as
well as the inner contours from the aligned photos. With

Fig. 2 The six photos used to produce the final coffee mug 3D model
(top two rows). Only the geometric model (bottom left) and the final
colored model (bottom right)

these distances an error is evaluated in order to guide our
nonlinear optimization method. After convergence, the cal-
ibrated camera is used to register the target photo onto the
model, and the process starts again for the next photo that
overlaps an already textured region. Figure 3 illustrates this
process, and the details of each step are described in the fol-
lowing sections.

4 Initial guess

The intrinsic parameters are obtained by the camera’s spec-
ification (e.g., CCD size) and the focal length (a lens with
fixed focal length was used in our experiments). Further pre-
cise calibration could be obtained, but for this work we did
not consider any radial or tangent distortions, and assumed
the center of the image as the principal point.

To compute the extrinsic parameters, three different ap-
proaches may be used: manually placing the initial config-
uration, manually selecting 2D–3D correspondences, or an
automatic method to retrieve the correspondences and re-
move outliers.

In the first case, the external orientation is defined within
a 3D visualization interface, where the 3D model should
be roughly oriented to match the photo being aligned, from
which the camera’s view vector can be defined by clicking
on the 3D surface. The camera is then translated along this
view axis by an estimate of the focus distance extracted from
the photo’s EXIF file (note that this value is very imprecise,
but suitable for our needs). Adding the up vector—also ac-
quired from the current view matrix—there is enough infor-
mation to build the camera’s initial extrinsic matrix. Even
though this manual method in most cases does not require
a long user interaction, for some models it becomes a very
tedious task, specially when there are no well-defined con-
tours to be extracted from the textures. Nevertheless, this

Fig. 3 System overview: (left) the target photo to be registered; (mid-
dle left) the partially textured model is positioned to roughly align the
photo with the geometry; (middle right top) the optimization system
in the process of matching the projected model’s contour with those
of the photo, using a smoothed distance transform (middle right bot-

tom); (right) a rendering of the model—with the new registered tex-
ture included—using the calibrated camera matrix matching the target
photo (left); note that the seams are intentionally left for visual feed-
back during the alignment, they are removed in a final texture blending
stage
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approach is specially useful for aligning the first photo,
where the model does not contain any color information
yet.

Feature based methods, such as SIFT [15] or Harris Fea-
ture Detector [12] together with NCC (Normalized Cross
Correspondence), are able to automatically generate 2D–2D
correspondences. We start by extracting feature points using
one of these classical methods from the literature, retriev-
ing a set of correspondences between an already aligned
photo (source), and a to-be-aligned photo (target). In any
case, the source’s feature points are back-projected onto the
model’s surface to recover their 3D positions using a simple
ray-casting procedure. The problem that is left is to retrieve
the exterior parameters of the camera so that the projection
of these 3D points matches their 2D correspondences on the
target image.

We proceed with RANSAC to remove outliers, where at
each iteration six correspondences pairs of 2D–3D features
are randomly chosen, and the external orientation problem
solved using a linear algorithm as described by Fiore [9].
Briefly, the method first solves for the depths of the 2D
points by eliminating the scale, rotation and translation com-
ponents, reducing the problem to finding the absolute orien-
tation of the camera. This second step is accomplished by
singular values decompositions and solving the Procrustes
Orthogonal Problem, i.e., finding the closest rotation matrix
to a given matrix. From this point, the translation and scale
components can be trivially computed.

For each iteration, we count the number of inliers for
the whole correspondence set, and keep the solution with
highest consensus. In addition, to improve our matches,
we compute the mean distance between the pixel corre-
spondences and remove those outside the standard devia-
tion. Even though there is no guarantee that this will re-
move any remaining outlier, we have noticed that this sim-
ple procedure greatly improves the initial alignment in some
cases. When there is a poor distribution of the correspon-
dences over the image the linear method sometimes fails,
i.e., when the SIFT or Harris features are concentrated in
some parts of the image because it contains large uniform re-
gions (without automatically extractable features). We have
thus included the option to insert correspondences manu-
ally to arrive at a better solution. For more controlled en-
vironments and simpler cases, the Harris method works
well enough and produces a better distribution of the cor-
ners, however, SIFT is usually more robust for most situa-
tions.

From this point, we proceed with the nonlinear iterative
method described in the following section. Figure 4 illus-
trates the result from both steps with a detail of the bottle
model.

Fig. 4 The initial alignment using the linear method (left) and the final
result after the full nonlinear optimization (right)

5 Optimization

In this section, the objective function used for a least-squares
minimization is derived, and the introduced modifications
are explained. Briefly, it is a variation of a Levenberg–
Marquardt implementation [16] that improves convergence
in the proposed scenario. For every iteration, the model is
rendered using only its own outer contours combined with
the inner ones of the already registered textures: the set of
points that generated the pixels of this projection serve as
our source points (pi ). These points are matched against the
target points (qi ), which in this case are the outer and in-
ner contour pixels of the photo being aligned. In short, we
search for the camera parameters that best fits the projec-
tion of the partially textured model (source) with the current
photo (target).

5.1 Objective function and its derivative

A standard way of evaluating how two contours (C1 and C2)
are similar is integrating along C1 the squared distance be-
tween each one of its points (y) and the point on C2 (q(y))
that best corresponds to y according to criteria that can in-
volve distance, similarity between geometrical features at
previously marked points and even the textures around y

and q(y). To make the correspondence almost everywhere
differentiable and y − q(y) suitable to be efficiently com-
puted, we will simply take q(y) as the point on C2 that is
closest to y. In the context where C1 is the projection of a
set of model edges relative to a camera configuration K and
C2 consists of distinguishable contours on a photograph, the
similarity measure which we would like to minimize can be
expressed as

f (K) = 1

N

N∑

i=1

D
(
C2, y(pi,K)

)2 (1)

where D(C2, .) is the distance to C2 and pi, i = 1, . . . ,N

discretize the contours projected onto C1. The function is
divided by N since the number of points varies with the view
direction and can change during an optimization process.

To minimize f (K) through a derivative based process
like Levenberg–Marquardt, we need to derive f in relation
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to the parameters chosen to represent K , which is done by
applying the chain rule to a sequence of functions whose
composition is the ith component of the sum defining f . In
the following, we will focus on each one of these functions.

Function y is the composition of the projection matrix
operator (π ) with the extrinsic matrix one, formed from a
rotation matrix R(K) and a translation vector t (K).

y(pi,K) = π
(
x(pi,K)

) = π
(
R(K)pi + t (K)

)
(2)

where x(pi,K) is the point corresponding to pi in camera
coordinates. π can be expressed by π(x) = Y x

x3
, where x3

is the z-coordinate of x and Y is the intrinsic matrix. From

that expression, we derive that ∂xπ(x) = Y [ I
x3

− xeT
3

(x3)
2 ].

While K is not concretely represented in our model, we
would rather derive our objective function with respect to
incremental rotations and translations R̃ and t̃ as in:
[
R(K) t (K)

0T 1

]
=

[
R̃ t̃

0T 1

][
R(Kcurrent) t (Kcurrent)

0T 1

]
(3)

We write then x(pi,K) = x+(r, t, x(pi,Kcurrent)), where
r and t parameterize R̃ and t̃ , using:

x+(r, t, x) = rrT

rT r
x + cos

(‖r‖)
(

I − rrT

rT r

)
x

+ sin
(‖r‖) r

‖r‖ × x + t (4)

where r represents a rotation around vector r̂ by ‖r‖ radians,
and t is a translation. Replacing sine and cosine by their
Taylor series, we obtain a Taylor series for x+ that yields
∂(r,t)x

+ = [−(x×) I ] at r = t = 0, with (x×) representing
the matrix for the cross product with x on the left.

As it is well known, D(C2, .) is a differentiable function
outside the medial axis of C2, whose gradient at yi is the
unitary of yi − q(yi). The objective function (1) can now be
derived with respect to the vectors r and t :

∂(r,t)f = 2

N

N∑

i=1

D(C2, yi)Ji

Ji = (∇yD(C2, yi)
)
(∂xπ)

(
∂(r,t)x

+)

= ∇yD(C2, yi)Y

(
I

xi3
− xie

T
3

(xi,3)2

)[−(xi×) I
]

(5)

where xi is the point pi in camera coordinates.
Thus, in the Levenberg–Marquardt context, we want to

solve a system of the form (A + λdiag(A))x = b, where:

A =
N∑

i=1

J T
i Ji and b =

N∑

i=1

−J T
i D(C2, yi) (6)

Usually, the Levenberg–Marquardt algorithm updates the
damping factor λ according to a parameter ρ, which is

Fig. 5 Objective function matching a pair of points located at x − a

and x + a with the pair {a,−a}. Observe that, when using the Leven-
berg–Marquardt algorithm, x converges to a if the initial guess x0 ≥ a

defined as the ratio between the decrease of the objec-
tive function (f (Kj ) − f (Kj+1)) and its expected decrease
(L(0) − L(x)), where L(x) is a local quadratic approxima-
tion of f based on the derivatives of D at Kj . Thus, the
expression for ρ we use is

ρj+1 = f (Kj ) − f (Kj+1)

1
N

〈x,λj diag(A)x + b〉 (7)

The output of one iteration is a candidate increment of
the rotation matrix and translation vector. These are applied
to the current extrinsic matrix, and the projection process is
repeated to validate the new solution. Then ρ is computed
by (7), if ρ > 0 we accept the candidate parameters and de-
crease λ; otherwise, we increase λ and do not update the
matrices for the next iteration. The expressions for updating
λ are those proposed by Madsen et al. [16].

5.2 Smoothed function approach

Making a point correspond to the its closest point on a tar-
get’s contour can impair the matching process in some as-
pects. The problems derive from clear correspondence flaws
like not being 1–1, not considering the similarity between
local features and having discontinuities along the target me-
dial axis. Discontinuities, in particular, can generate singular
points which, in spite of often not even being local minima
for f , become optimal if the parameters are constrained to
an adjacent region capable of containing the whole sequence
produced by the Levenberg–Marquardt. Figure 5 presents an
1D example of such a situation.

A simple way of reducing this effect is to smooth the dis-
tance function. For every photo, we first compute a distance
transform using the method described by Felzenszwalb and
Huttenlocher [8], and then apply a Gaussian filter and nu-
merically compute its gradient to use on the derivative.
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Fig. 6 Comparison of the standard closest-point distance with the
smooth function: (left) a sphere model with a horizontal white stripe,
where a photo was registered at the correct position, and then an-
other copy was placed in a different configuration (the diagonal stripe)
to test the convergence in an ideal situation; (middle) the standard
method converges to the wrong configuration; (right) while the pro-
posed smooth function is able to achieve the exact match

Figure 6 illustrates the typical situation where the smooth
function is able to arrive at the correct configuration, while
the standard method fails. Note that the white stripe is turned
into practically two parallel lines after extracting the inner
contours.

6 Implementation

In order to have an efficient and practical system that can be
used in a real digitalization campaign, each photo alignment
should not take more than a few minutes. To this end, a series
of GPU techniques are used to improve the performance and
provide a fast visual feedback.

For every Levenberg–Marquardt iteration, a variation of
a two-pass rendering technique [6] produces a bitmap rep-
resentation of the model’s outer contour. Since the corre-
sponding 3D points in camera position are required for the
optimization phase (Sect. 5), in the second rendering pass
a simple shader program is used to gather this information
in a framebuffer. This result is combined with another pass
projecting the inner contours of the already registered pho-
tos. The final result is read back to the CPU and the buffer
sequentially scanned to retrieve the contour pixels and cre-
ate a list of source points (pi ) and their corresponding 3D
positions.

Following, the list of contour pixels are passed to the
optimization method, the smoothed versions of (6) (as de-
scribed in Sect. 5.2) are computed, and the system is solved
by matrix decomposition using the Eigen library [11].

To speed up the convergence, a multiresolution strategy
is employed by downsampling the images: For the first res-
olution levels, a rough alignment is quickly obtained, which
is incrementally refined during the higher resolution levels.
The algorithm starts with low-resolution photos (e.g., 25 %
of the original resolution), and doubles it once the optimiza-
tion has converged for the current level. We conservatively
consider 6 consecutive iterations without a decrease of at
least 1 % of the mean error as stable. This value is based on
our experiments.

Finally, to allow for an interactive manipulation and vi-
sualization of the texturing progress, a multirender pass is
implemented for visualizing a large number of textures si-
multaneously. Note that a final unified texture, or per-vertex-
color, is only generated in a final process after registering all
photos, hence, at any given time during the acquisition and
registration process a subset of n registered photos must be
available as texture units. In fact, there are two correspond-
ing subsets, one with the original textures for visualization,
and another containing the extracted edges for optimization
purposes. Thus, we create n texture coordinates buffers, and
for each pass render to a framebuffer the maximum number
of texture slots available for the graphics card. The result
of one render pass is accumulated with the subsequent ones
until all textures are rendered and the final result is ready.

7 Results

The results are illustrated with a few datasets, where we
intentionally chose objects that were either handcrafted or
made of natural material to avoid very clear and defined con-
tours, which would make the correspondence matching eas-
ier. All geometries were acquired with a NextEngine scan-
ner; the provided color information was discarded since we
wish to achieve a solution for any type of acquisition device.
All photos were taken with a Nikon D80 in full resolution
mode, and later downsampled to 2200 × 1474. The chosen
setup was to keep the camera fixed and rotate the objects
over a black background. The camera was connected to the
computer in order to shoot and download the photos directly
through the system’s interface. Three different levels were
used for the multiresolution scheme: 400 × 268, 800 × 536,
and the original 2200 × 1474. In average each photo was
registered in 2–3 minutes.

Once all photos are registered, the final colored model
is generated using the approach by Callieri et al. [3]. All
models were produced with a per-vertex color, but texture
maps could be similarly created. Figure 7 shows renderings
of the final results.

Table 1 respectively gives for each column: the number of
triangles for each input model; the number of triangles after
resampling for producing a smooth per-vertex-color result;
the number of registered photos; the average mean and max-
imum error (in pixels) of all photos; and the average number
of iterations per resolution level. The error is associated to
the distance D(C2, y(pi,K)) (1), i.e., mean and maximum
distance from every pixel of the projected contour to the tar-
get one. Note that the errors account also for discretization
issues during rasterization, and that it does not correspond
to the final global registration error; it is the error consid-
ering the already registered photos when each target photo
was aligned.
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Fig. 7 Ray-traced colored models: bottle (left), vase (middle), coffee mug (left top), and the same model registered in inverse ordering (left bottom)

Table 1 Datasets description

Model Tris (orig) Tris (final) Photos Mean error Max error 400 × 268 800 × 536 2200 × 1474

Coffee mug 240K 1.9M 6 3.04 8.48 9 11 16

Coffee mug (inv.) 240K 1.9M 6 3.34 10.2 9 10 15

Bottle 115K 2.7M 6 1.12 3.14 10 12 14

Bottle (automatic) 115K 2.7M 6 2.69 9.2 10 9 7

Vase 216K 3.4M 5 0.92 2.10 9 10 16

Toy 1.1M 813K 6 2.43 6.41 7 9 13

Pestle (automatic) 48K 780K 5 1.56 3.2 15 7 7

Meridian circle 3.1M 148K 41 4.1 14.8 21 18 12

Coffee mug This is apparently the simplest case, since it
offers more geometric hints (i.e., the handle) than the other
two. On the other hand, while the handle can be useful in
some cases, it might mislead the optimization on others.
When it is in front of the mug in a manner that it does not
contribute to the outer contours (Fig. 2, middle row left),
it becomes a possible source of misalignment, due to the
projection of false contour lines. Another issue is that the
drawings of the flowers and leaves are not very sharp (possi-
bly hand painted), which makes the contour extraction error
prone.

To make it clear that the ordering of the photo does not
have a large impact on the method—unless of course in
cases like the bottle as stated below—we have also textured

the coffee mug using the inverse photo ordering. From Ta-
ble 1, we note that it had a slight higher error, which is
mostly attributed to the manual rough alignment. Visually
both textured models are practically identical (Fig. 7, right).

Bottle This handmade bottle (Fig. 7, left) would be the
simplest case if not for one detail: it has a dent on one side.
Since the geometry of this depression is hard to capture from
the photos, it was important to align the two images that
contain it first (Fig. 8, left and middle). Even so, from Fig. 8
(right), it is observable that the method could not deal per-
fectly with this issue.

We have also textured this model using the automatic lin-
ear alignment, and were able, without any additional tweak-
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Fig. 8 Two photos used to texture the bottle model (left and middle),
where it is possible to perceive the depression on the surface. Misalign-
ment of the produced textured model caused by the dent on the surface
(right)

Fig. 9 A rendering of the 3D model of a wooden pestle textured en-
tirely using the automatic linear method as initial step (top). Two se-
quential photos of the pestle that went through the automatic initial
alignment (bottom)

ing, to align all images but one, where not enough corre-
spondence inliers were found in regards to the previous im-
age. On average, around 40 inliers were retrieved out of ap-
proximately 300 correspondences for each pair of overlap-
ping photographs. Even though the automatic first alignment
gives higher mean and maximum error in comparison to a
careful manual alignment, visually the difference is not sig-
nificant. The main reason is that the strongest misalignments
occur where there are no correspondence inliers, which are
usually regions near the image’s border that are given very
low weight during the texture blending phase.

Pestle This object was entirely aligned using automatic
correspondences, which were extremely important for two
reasons: First, we were not able to texture it using the man-
ual approach, since visually it is it very difficult to find corre-
spondences; and second, almost no well defined edges were
extracted from two overlapping images, mainly because the
scratches on the wood surface are very sensitive to illumi-

Fig. 10 A detail of the extracted contours from one photo of the vase.
Note how there are almost no unique correspondence points, just a few
at the stripes endpoints

nation effects. Thus, for the nonlinear iterative phase, we
also used the extracted correspondences as source and target
points. The result is shown in Fig. 9.

Vase This is probably the most challenging model, be-
cause there are very few texture details that can be precisely
tracked between photos. Most stripes complete the whole
diameter, and only some endpoints can be used as good
correspondences, as illustrated in Fig. 10. Even though the
stripes can be aligned within two degrees of freedom, the
model might rotate almost freely around the vertical axis.
To achieve a good alignment, the effort for placing the initial
guess for this model was considerably higher than the others
as a more precise starting point was required. The automatic
method also did a poor job in this case since it searches for
corner points. Another note is that, since the spatial resolu-
tion of the stripes is very high, a dense mesh, of approxi-
mately 3.4M triangles, was generated to reduce aliasing ar-
tifacts when mapping the photos to per-vertex-colors.

Toy To demonstrate that the method can also be extended
to a more generic scenario, we have produced a model of
a toy character (Fig. 11) using the same setup. Differently
from the previous datasets, in this case, the inner silhou-
ettes of the model’s geometry were also used to guide the
alignment. However, since this was not the main goal of
this work, these extra contours were extracted in a naive
way—edge detection on the rendered image—leading to the
small misalignments in the final model. Note that the final
model was actually downsampled since it contains consid-
erably less texture details in comparison to the others.
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Fig. 11 Rendering of the final toy model (left) and two input photos
(right)

7.1 A practical case

We put the system to test within a real digitalization cam-
paign, where the target is a historical scientific instrument,
more specifically a meridian circle. Here, we show the first
results for one of its support base. The geometry was ac-
quired using a Minotal Vivid9i scanner, and the photos us-
ing the same camera as before. However, in this case, a total
of 41 photos were registered, where no single photo covers
the whole object (some examples are illustrated in Fig. 1).
Instead of refining the mesh to use the color-per-vertex ap-
proach, an unified texture was generated.

There are a series of factors that renders this a more chal-
lenging case than the controlled experiments above. First,
the background was not homogeneous, so foreground ex-
traction sometimes had to rely on manual hints; nonetheless,
this could be further improved with more robust extraction
methods. Second, since the object is extremely heavy the
camera was displaced around it, so the distance and orien-
tation of the camera relative to the object varied much more
than before and we had less control over the illumination.
Third, the scanner had difficulties in acquiring some parts
due to the dark material, and the resulting geometric model
contains artifacts which misguided the alignment of some
photos producing a few ghosting effects.

Another point is that the automatic feature extraction
methods, specially SIFT, had a high tendency to accumu-
late features in areas such as the drawn white numbers on
the side, leading the linear calibration method to failure.
Thus, for many photos manually selecting correspondences
was the best way to achieve a good first guess, usually 7–
10 points were enough. Note that, even though this model
contains more geometric features than the previous ones,
differently from the toy example we did not use the inner
contours from the geometry in order to better certify that the
proposed method was able to handle a real practical case.

In spite of all these obstacles, we were able to produce a
textured model by sequentially aligning the photos. Not only

the alignment was good enough for on-site evaluation but it
does not contain any considerable ghosting artifact in most
regions, especially those without geometric problems.

7.2 Limitations

The method cannot handle well some situations, like the
dent on the bottle dataset, because the geometric feature is
not apparent as a contour from any viewpoint. Apart from
this special case, there is still a small amount of misalign-
ment on other regions, even though in a much finer scale.
As discussed previously (Sect. 2), there are no known meth-
ods that can achieve a perfect registration for most practical
cases, and the fine-tuning is usually carried out in a post-
processing stage [7, 10]. This would be specially important
in cases such as described in Sect. 7.1, where a perfect align-
ment was not possible due to the approximated geometry.

A more important observation is that if no relevant in-
formation can be extracted that is preserved throughout the
photos, the method will probably fail. This is even more crit-
ical for the automatic rough alignment, where the set of cor-
respondences should have a minimum percentage of inliers
for RANSAC to work, and a minimum distribution over the
image for the linear external orientation algorithm.

8 Conclusions

We have presented a method to register high-resolution pho-
tos onto 3D models that lack geometric features. The strat-
egy works in an incremental “shoot and register” manner,
being highly suitable for on site digitalization campaigns
where photos are usually taken in a sequential manner. An
initial approximative camera position for each photo can be
manually or automatically set using a linear method based
on point feature correspondences. The registration proceeds
using a combination of outer and inner contours from the
rendered model and the photos. To avoid common pitfalls
with the standard optimizations methods, we described a
variation of the Levenberg–Marquardt formulation that uses
a smoothed function as minimization criterion, and is able
to handle difficult cases arising from the proposed target ap-
plications. In addition, we employ some GPU programming
techniques to significantly accelerate the optimization pro-
cess.

Regarding the fully automatic method, on one hand the
initial registration is not yet as precise as a very careful user
that takes his time to set a very precise first alignment. On
the other hand, we have been able to texture objects that
were not possible before with such manual approach, as the
wooden pestle model, for example. Nevertheless, in both
cases, the nonlinear alignment was able to significantly re-
duce the error.
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8.1 Future works

To facilitate the use of this approach in real digitalization
campaigns, more robust edge extraction and background re-
moval methods should be implemented. However, a more
pressing point is the distribution of the automatically de-
tected features, where a way to guarantee minimum cov-
erage would certainly lead to great improvements. Further-
more, even though it does not seem necessary for every
model, a final bundle adjustment pass might help to achieve
a better results.

Since we have accomplished a good speedup using GPU
implementations for rendering the contours during each op-
timization iteration, a natural direction is to compact the
buffer (using, for example, the Stream Compactor Cuda al-
gorithm [2]) reducing it to a vector containing only the de-
sired pixels, and build the optimization matrix directly in
GPU. Then only the final summed 6 × 6 matrix should be
transferred back and passed to the solver. We believe this
could help achieve near interactive times for the conver-
gence.
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