
Texturing 3D models with low geometric features

Ricardo Marroquim, Gustavo Pfeiffer, Felipe Moura de Carvalho, Antonio A. F. Oliveira

Laboratório de Computaçao Gráfica (LCG) - COPPE - UFRJ

Abstract—This paper presents a texture projection and align-
ment method specifically tailored for objects with low geometric
features. A common way to build virtual replicas is to acquire the
geometry with a 3D scanner and model its reflectance properties
(i.e. colors) by projecting photos onto the 3D surface. To correctly
align each photo it is necessary to retrieve the camera’s extrinsic
matrix, which is usually achieved by optimization algorithms that
match geometric features of the model with their corresponding
ones on the photos. However, when dealing with cultural her-
itage artifacts or mechanical pieces, for example, some models
inherently lack significant geometric detail.

We propose a method to automatically extract these features
from high resolution photos and register them in a sequential
manner using a variation of the contour-based approaches.
The algorithm requires minimum user intervention as only an
initial guess of the camera’s direction is required for each
photo. In addition, we describe an improved formulation of the
optimization method based on a smooth function that avoids
typical local minima found in this scenario. The results are
illustrated with high-resolution textured models produced by our
system.

Keywords-texture-to-geometry registration; 3D virtual replica;
high-resolution texture mapping; least-squares minimization;

I. INTRODUCTION

Building 3D virtual replicas of real objects is a challenging

topic and has received a broad attention during the last

years: with modern scanners it is possible to acquire surface

geometry with great fidelity. Even though the process is not

generally fully automatic, and may be laborious depending on

the subject, it has reached a mature level and many commercial

systems are able to produce high resolution models for a wide

range of applications.

Unfortunately, the acquisition and mapping of reflectance

properties has lagged behind. Since most digitalization equip-

ments lack quality color registration embedded systems, this

stage is usually carried out separately through one of two

methods: acquiring BRDFs or projecting photographs by cal-

ibrating the camera’s parameter. Even though the former is

known to achieve high-quality results, the process still requires

complex lab setups and expensive apparatus. On the other

hand, notwithstanding the relative low cost of photographic

equipments, most camera calibration approaches demand a

considerable amount of user interaction, and there is no single

procedure that can deal robustly with a great variety of

scenarios. This paper is inserted in this latter discourse.

Methods to solve the camera calibration problem are mainly

based on finding correspondences between images or between

an image and a 3D surface. Most approaches rely on ge-

ometric features to guide an optimization method, specially

Fig. 1. A rendering of a model textured with the proposed method.

when the model does not yet contain any color information.

However, in some cases it lacks significant, or almost any,

geometric characteristics invalidating, or severely limiting,

these strategies. Even when the model is partially textured,

matching issues may still arise when there are no well defined

correspondences, such as drawings, characters or nonrepetitive

themes. Examples of such situations can be found in many

applications: cultural heritage (e.g. vases), engineering (e.g.

mechanical pieces), or even both when dealing with historical

scientific instruments.

Another consideration is the ability to perform well in an

out of the lab environment. In many digitalization campaigns

the object in question cannot be displaced – specially in the

context of cultural heritage – and it becomes important to have

an immediate feedback of the progress and the quality of the

acquired photos. This not only may avoid another visit to the

site in order to repair any misregistration or uncovered regions,

but throughout the interventions of a restoration process, for

example, there might not be a second chance to acquire the

color information at a specific stage. Registering a photo right

away also helps to deal with subjects that have motifs or no

predominant geometric direction, as it might be a difficult and

tedious task to latter distinguish between the photos in order

to complete the alignment.

Given this scenario, the present paper focus on three specific

problems related to the calibration of the camera parame-

ters: mapping reflectance information onto 3D models with

low surface details; handling textures with no predominant

characteristics; and building an efficient method that works

2011 24th Conference on Graphics, Patterns and Images

1530-1834/11 $26.00 © 2011 IEEE

DOI 10.1109/SIBGRAPI.2011.37

1

2011 24th SIBGRAPI Conference on Graphics, Patterns and Images

1530-1834/11 $26.00 © 2011 IEEE

DOI 10.1109/SIBGRAPI.2011.37

1

incrementally, i.e. in a “shoot and register” fashion.

Our solution resorts to only the model’s external contours

coupled by texture features from previous registered photos

(Section IV). The alignment is carried out by an optimization

method specifically designed to handle the aforementioned

conditions (Section V). The approach works in a sequential

manner during the acquisition process, and with the registered

photos we were able to produce high quality texture maps (or

per-vertex color) as depicted in Section VI.

Contributions: Briefly, the two main proposed contribu-

tions are:

1) an incremental camera calibration method to map high-

resolution photographs to 3D models lacking relevant

geometric features, and/or without obvious texture cor-

respondences;

2) and the formulation of an optimization approach for

texture registration based on a smoothing function, and

its detailed derivation.

II. RELATED WORK

The use of contours to drive the image-to-geometry registra-

tion is not new. Neugebauer and Klein [1] start with an user

interaction point correspondence to set the initial estimation

of the parameters, followed by a Levenberg-Marquardt mini-

mization approach. Their objective function is a combination

of these point correspondences, a contour-based criterion, and

an attribute-based one where information from the object’s

surface is compared to those of the images.

Matshushita and Kaneko [2] compute the minimum set

of photographs that covers all the geometry. In fact, their

methodology takes the inverse direction of most related works,

where synthetic views are first generated using only the geom-

etry, and then photos are taken from viewpoints matching as

close as possible these locations. Since it is almost impossible

to exactly match them manually, an optimization algorithm

minimizes the contour errors during a final stage.

Another variation was proposed by Lensch et al. [3]. Instead

of comparing distance from curves, they compare the filled

areas inside the contours by superposing them, which they

refer to as the silhouettes. A fast hardware XOR method is

computed over the overlapping projections to serve as the error

criterion, which in the case of a perfect match would be zero.

An optimization method is then run and restarted several times

to avoid local minima. The initial guess is given by retrieving

some information from the camera and by sampling possible

angular directions.

Liu et al. [4] proposed a method that combines a dense

point cloud from 3D range scan data, with a sparse point cloud

build from a 3D reconstruction of 2D photos. A subset of the

2D photos are aligned with the dense set, followed by the

registration of the complete set using multiview geometry.

Corsini et al. [5] employ mutual information to develop

an error metric based on surface properties such as normals,

ambient occlusion and reflection directions. Even though they

achieve fast and high-quality results, their method is only

suitable for models containing high geometric details to extract

relevant illumination-based information.
In fact, this last remark is what mainly differentiates our

methods from the previous approaches, since all of them

require significant geometric features to drive the optimization.
After calibrating the camera parameters for all photos, a

method to blend the textures is required. Among these, some

treat the issue as a global optimization problem [6], while

others rely on a local texture blending [7]. Finally, since it

is not always possible to achieve a perfect result with only

the calibrations methods – in view of issues such as lens

distortion or imprecise geometry – a final warping step might

be necessary to correct small misalignments or discontinuities

due to illumination variations ([8], [9], [6], [10]).

III. METHOD OVERVIEW

The input for the system is a set of photos and the 3D

geometry. Fig. 2 depicts two input photos and the untextured

coffee mug input model used to produce the final colored

model.

Fig. 2. Top row: two of the size photos registered onto the 3D model (bottom
row left) to produce the final colored model (bottom row right).

Assuming that at least one image has already been mapped

– registering the first is actually the easier case – we start

by choosing the next target photo and placing the model in

a similar position. The initial camera parameters are given

by the current view and by selecting a point on the model’s

surface. Then, the target image’s contours are extracted and

the distance transform computed once, followed by an op-

timization process. For each iteration the model’s contours

are projected onto the target image plane to compute the

minimization error. At last, after convergence, the calibrated

camera is used to register the photo onto the model. Fig. 3

illustrates this process.

IV. CONTOURS

The model’s contours are a set of points on the surface

satisfying:

nT
i (pi − c) = 0 (1)

22

��� ��� ��� ���

Fig. 3. System overview: (a) the target photo to be registered; (b top) the partially textured model is placed in a position that resembles the pose from the
target photo, (b bottom) and the camera direction is estimated with a simple mouse click; (c top) the optimization system in the process of matching the
projected model’s contour with those of the photo, (c bottom) using a smoothed distance transform; (d) a rendering of the model using the calibrated camera
matrix matching the target photo (a); note that the seams are intentionally left for visual feedback during the alignment, they are removed in a final texture
blending stage.

where pi is a point on the surface S with normal ni, assuming

that the camera is positioned at c and directed at the center of

the object. Contours are typically a set of disconnected loops

on the surface, however our method considers only the subset

of these loops that separates the model from the background,

i.e. the outer contours, or outlines. These boundaries are

extracted by a simple two-pass rendering technique [11], re-

sulting in a bitmap representation of the contour. Nonetheless,

the corresponding 3D coordinates are still required for the

optimization phase (Section V), hence, in a last rendering

pass a simple shader program is employed to gather this

information in a framebuffer.

The same idea follows on to the photos’ contours, i.e. the

outlines between the object’s representation and the back-

ground. To this end, common image processing techniques

are applied: a simple thresholding method is used to separate

the background, while the inner contours are extracted using a

standard Canny [12] method. After the completion of at least

one registration, the inner contours from the already registered

textures are used as reference for the next alignments.

V. OPTIMIZATION

In this section the objective function used for the least-

squares minimization is derived, and the introduced varia-

tions are explained. Briefly, it is a variation of a Levenberg-

Marquardt implementation [13] that avoids common local min-

ima encountered in the proposed scenario. For every iteration,

the model is rendered using only its own outer contours com-

bined with the inner ones of the already registered textures: the

set of points that generated the pixels of this projection serve

as our source points (pi). These points are matched against

the target points (qi), which in this case are the outer and

inner contour pixels of the photo being aligned. In short, we

search for the camera parameters that best fits the projection

of the partially textured model (source) with the current photo

(target).

A. objective function

There are many forms of modeling the similarity between

two contours. One intuitive model is to minimize the sum

of the squares of the distances between each projected point

of the model contour and the respective nearest point of the

photograph contour. Note that this function is not a standard

least squares objective function since the target point (i.e. the

closest point) changes throughout the optimization. Thus, let

y(p, k) be a function that maps a camera configuration k and

a 3-dimensional point p in global coordinates to the point it

generates on the model’s contour, and let q(y) be the point

in the photograph’s contours that is closest to y. The function

we would like to minimize is:

f(k) =
1

N

N∑
i=1

||y(pi, k)− q(y(pi, k))||2 (2)

where we assume there is one 3-dimensional point pi for each

pixel in the model’s contour (Section IV). Also, note that the

number of points N depends on the view direction and may

change through the optimization, so we divide the objective

function by N . In this way, the optimizer is not biased towards

decreasing the number of contour points.

The y function can be written as

y(p, k) = π(x(p, k)) (3)

x(p, k) = R(k)pi + t(k) (4)

where π is the projection matrix operator, x is the correspon-

dent point to p in camera coordinates and R(k) and t(k) are,

respectively, the rotation matrix and translation vector that we

are optimizing.

The operator π is defined by the perspective division and

the intrinsic matrix multiplication:

π(x) = Y
x

eT3 x
(5)

where e3 is the vector (0, 0, 1)T and Y is the intrinsic matrix.

This expression can be trivially derived as will be shown.

33

The q(y) function is more delicate. First, because it is not

a continuous function, since target points are given in pixel

coordinates (integers); so we would have to interpolate it by

a smooth function. In derivative-based optimization methods

(such as Newton, Quasi-Newton and Levenberg-Marquardt),

it is sufficient to approximate the contour around qi by a

quadratic curve, i.e. with normal and curvature defined. Here,

we approximate it by a linear curve.

The R and t functions form the current extrinsic matrix. We

will not formally define them in function of k (since, in fact,

we do not even represent k in our model, only the extrinsic

matrix itself), but we can consider that, in the j-th iteration of

the method we have a camera configuration kj where R(kj) =
Rj and t(kj) = tj . Without loss of generality, we consider that

the rotation always precedes the translation, so we can model

R(k) and t(k) as:[
R(k) t(k)
0T 1

]
=

[
R̃j(k) t̃j(k)
0T 1

] [
Rj tj
0T 1

]
(6)

where R̃j(kj) = I and t̃j(kj) = 0. In other words, we are

optimizing the camera increment at each iteration, instead of

always optimizing in regards to the initial conditions. This

manipulation reduces the problem of deriving R(k) and t(k)
at any point k to deriving them only where R = I and t = 0,

which can be done via Taylor series.

B. Derivatives

1) π(x): The jacobian of π(x) (eq. 5) is given by:

∂xπ(x)δx = Y
δx

eT3 x
− Y

x

(eT3 x)
2
eT3 δx⇔

∂xπ(x) = Y [
I

eT3 x
− xeT3

(eT3 x)
2
] (7)

2) q(y): If y is not on the middle axis of the contour, the

jacobian of q(y) can be calculated using its linear approxima-

tion (i.e. the orthogonal projection on the line tangent to the

contour):

q(y) = qi + (I − n̂in̂
T
i)(y − qi) +O(||y − yi||2)⇒

∂yq(y)δy = (I − n̂in̂
T
i)δy ⇔ ∂y{y − q(y)} = n̂in̂

T
i (8)

where n̂i is the normal to the curve at qi. If yi−qi � 0 we can

assume n̂i =
yi−qi
||yi−qi|| , but if yi − qi ≈ 0, this approximation

may fail, since q is given as a pair of integers.

When the normal is not defined (for instance, at a corner, or

at the end of an open curve), the target q will not change with

y, so we should consider q(y) constant, which means y−q(y)
behaves as a distance-to-point function, and ∂y{y−q(y)} = I .

One may consider the corner as a smooth curve and tend the

curvature at q to infinite, so that using simply n̂ = y−q
||y−q|| helps

keeping the jacobian continuous. There is also a heuristic that

interpolates between n̂in̂
T
i and I according to the curvature

at q, giving a greater weight to the I − n̂in̂
T
i portion as the

curvature increases, thus yielding ∂y{y−q(y)} ≈ I on corners.

3) R̃(k) and t̃(k): The jacobian matrices of R̃(k) and t̃(k)
are more complicated to demonstrate. We want to apply a 4x4

transformation on the left of the current extrinsic matrix, which

can be represented by a rotation around a unitary vector r̂ of

θ degrees and a translation t:

x+ = R̃(k)x+ t̃(k)⇔
x+ = r̂r̂Tx+ cos(θ)(I − r̂r̂T)x+ sin(θ)r̂ × x+ t (9)

where x+ should be interpreted as the position of x after this

left multiplication on the extrinsic matrix.

If we relax the condition that r̂ has to be unitary, changing

r̂ to r
||r|| and using θ = ||r||, then we obtain:

x+ =
rrT

rT r
x+ cos(||r||)(I − rrT

rT r
)x+ sin(||r||) r

||r|| × x+ t

This equation is singular at r = 0, although we know

lim(r,t)→0 x
+ = x. If we replace sin ||r|| and cos ||r|| for their

Taylor series, we obtain:

x+ = x+ r × x+ t+
(rrT − ||r||2I)x

2
− ||r||

2r × x

3!
+ ...⇒

x+ = x+ r × x+ t+O(||r||2) (10)

yielding the derivative:

∂(r,t)x
+

[
δr
δt

]
= δr × x+ δt⇒

∂(r,t)x
+ =

[−(x×) I
]

(11)

where (x×) should be interpreted as the matrix of the cross

product with x.

4) Final expression: The objective function (eq. 2) can now

be derived with respect to the r and t vectors of the subsection

above:

∂(r,t)f =
2

N

N∑
i=1

(yi − qi)
TJi

Ji = (∂y{y − q})(∂xπ)(∂(r,t)x+)⇒

Ji = n̂in̂
T
i Y (

I

eT3 xi
− xie

T
3

(eT3 xi)2
)
[−(x×) I

]
(12)

where xi is the point pi in camera coordinates.

Thus, in the Levenberg-Marquardt context, we want to solve

a system of the form (A+ λdiag(A))x = b, where:

A =

N∑
i=1

JT
i Ji (13)

b =
N∑
i=1

JT
i (qi − yi) (14)

Usually, the Levenberg-Marquardt algorithm updates the

damping factor λ according to a parameter ρ, which is defined

as the ratio between the decrease of the objective function

(f(kj) − f(kj+1)) and its expected decrease (L(0) − L(x)),
where L(x) is a local quadratic approximation of f based on

44

the derivatives of y and q at kj . Thus, the expression for ρ we

use is:

ρ =
f(kj)− f(kj+1)

1
N 〈x, λdiag(A)x+ b〉 (15)

C. distance transform

The target image does not change during the minimization

process, however, for every iteration the source points are

displaced and their corresponding image contour pixel (qi)
must be retrieved. To this end, a distance transform, as

described by Felzenszwalb and Huttenlocher [14], is computed

once for every photo serving as target. The distance transform

returns for every image pixel the closest pixel on the target

photo’s contour and the corresponding distance.

D. Smoothed function approach

The disadvantage of minimizing the distance to the closest

point is that the point qi is generally not the ideal corre-

spondence point to yi, and, depending on the initial guess,

it may be very far from the actual point yi should match.

This aspect turns this objective function seriously vulnerable

to local minima.

For instance, consider the situation where we have an

internal contour with two parallel lines, and we try to translate

the object perpendicularly to those lines. In a very simplified

mathematical example for this situation, we are optimizing 2

object points to 2 target points in one dimension, where the

target points are located at a and −a, and the object points

are located at x+ a and x− a, as in Fig. 4:

Fig. 4. Objective function matching points x− a and x+ a to a and −a.

This function is not derivable at x = a, since

limx→a− f ′(x) = 2a and limx→a+ f ′(x) = 0. Thus, if the

initial guess has x > a, then a behaves as a local minimum,

because the damping factor λ forces the Levenberg-Marquardt

method to take a step that is lesser than the necessary to solve

the linearized function.

A simple way of solving this problem is to smooth the

distance function. In other words, we apply a Gaussian filter to

the distance transform of each image (call it d(y)) and compute

its gradient (g(y)) to use on the derivative. We replace n̂n̂T

for g(y)T in the jacobian Ji (note that the height of the matrix

also changes), and qi − yi for −d(y) in the formula for b.

Fig. 5 illustrates the typical situation where the smooth

function is able to arrive at the correct configuration, while

the standard method stops at a local minimum. Note that the

white stripe is turned into practically two parallel lines after

extracting the inner contours.

(a) initial setup (b) closest-point distance (c) smoothed distance

Fig. 5. Comparison of the standard closest-point distance with the smooth
function: (a) a sphere model with a horizontal white stripe, where a photo
was registered at the correct position, and then another copy was placed in a
different configuration (the diagonal stripe) to test the convergence in an ideal
situation; (b) the standard method gets stuck in a local minimum, (c) while
the proposed smooth function is able to achieve the exact match.

E. initial guess

To compute the initial guess the system must be supplied

with the camera’s direction and position. Aiming at minimum

user interaction, the first is obtained by the vector from the

current view point to an interactively selected point on the

model’s surface; while a distance along this vector is given by

the estimated focus distance extracted from the photo’s EXIF

file (note that this value is very imprecise, but suitable for our

needs). Adding the up vector – also acquired from the current

view information – there is enough information to build the

camera’s initial extrinsic matrix.

The intrinsic parameters are obtained by the camera’s speci-

fication (e.g. CCD size) and the focal length (a lens with fixed

focal length was used in our experiments). Further precise

calibration could be obtained, but for this work we did not

consider any radial or tangent distortions, and assumed the

center of the image as the principal point.

F. iterations

For each iteration the partially textured model is projected

onto the plane of the current target photo. The rendered image

is read back, and for each contour pixel found, the original 3D

coordinates are retrieved from the framebuffer, as explained in

Section IV. Following, the smoothed versions of equations 13

and 14 (as described in Section V-D) are computed and the

system is solved by matrix decomposition using the Eigen

library [15].

The output of one iteration is a candidate increment of

the rotation matrix and translation vector. These are applied

to the current extrinsic matrix, and the projection process is

repeated to validate the new solution. Then, ρ is computed by

Equation 15, if ρ > 0 we accept the candidate parameters and

decrease λ; otherwise we increase λ and do not update the

matrices for the next iteration. The expressions for updating

λ are those proposed by Madsen et al. [13].

55

To speed up the convergence, a multi-resolution strategy is

employed by down-sampling the images: for the first resolu-

tion levels a rough alignment is quickly obtained, which is

incrementally refined during the higher resolution levels. The

algorithm starts with low-resolution photos (e.g. 25% of the

original resolution), and doubles it once the optimization has

converged for the current level. We conservatively consider 6

consecutive iterations without a decrease of at least 1% of the

mean error as stable, this value is based on our experiments.

VI. RESULTS

The results are illustrated with three datasets: a coffee mug,

a bottle, and a flower vase. We have intentionally chosen

objects that were either handmade or hand-painted to avoid

very clear contours, which would make the correspondences

easier. All geometries were acquired with a NextEngine scan-

ner; the provided color information was discarded since we

wish to achieve a solution for any type of acquisition device.

All photos were taken with a Nikon D80 in full resolution

mode, and latter downsampled to 2200 × 1474. The chosen

setup was to keep the camera fixed and rotate the objects

over a black background. The camera was connected to the

computer in order to shoot and download the photos directly

through the system’s interface. Three different levels were used

for the multi-resolution scheme: 400 × 268, 800 × 536, and

the original 2200× 1474.

Once all photos have been registered, the final colored

model were generated using the approach by Callieri et al. [7].

All models were produced with a per-vertex color, but texture

maps could be similarly created. Fig. 6 shows renderings of

the final results.

Coffee mug: This is apparently the simplest case, since

it offers more geometric hints (i.e. the handle) than the other

two. On the other hand, while the handle can be useful in some

cases, it might mislead the optimization on others. When it is

in front of the mug in a manner that it does not contribute to

the outer contours (Fig. 2 top row left), it becomes a possible

source of misalignment, due to the projection of false contour

lines. Another issue is that the drawings of the flowers and

leaves are not very sharp (possibly hand painted), which makes

the contour extraction error prone.

Fig. 7. Two photos used to texture the bottle model (left and middle), where
it is possible to perceive the depression on the surface. Misalignment of the
produced textured model caused by the dent on the surface (right).

Bottle: This handmade bottle would be the simplest of

all three if not for one detail, it has a dent on one side. Since

the geometry of this depression is hard to capture from the

photos, it was important to align the two images that contain

it first (Fig. 7 left and middle). Even so, from Fig. 7(right)

it is observable that the method could not deal perfectly with

this issue.

(a) detail of a photo (b) extracted contours

Fig. 8. A detail of the extracted contours from one photo of the vase. Note
how there are almost no unique correspondence points, just a few at the stripes
endpoints.

Vase: This is probably the most challenging model,

because there are very few texture details that can be precisely

tracked between photos. Most stripes complete the whole

diameter, and only some endpoints can be used as good

correspondences, as illustrated in Fig. 8. Even though the

stripes can be aligned within two degrees of freedom, the

model might rotate almost freely around the vertical axis. To

achieve a good alignment, the effort for placing the initial

guess for this model was considerably higher than the others

as a more precise starting point was required. Another note is

that, since the spatial resolution of the stripes is very high, a

dense mesh, of approximately 3.4M triangles, was generated

to reduce aliasing artifacts when mapping the photos to per-

vertex-colors.
We have dedicated only a minimum amount of effort on

what regards performance optimizations. Nonetheless, after

setting the initial guess, each photo is registered in approx-

imately 2-4 minutes. Table I respectively gives for each

column: the number of triangles for each input model; the

number of triangles after resampling for producing a smooth

per-vertex-color result; the number of registered photos; the

average mean and maximum error (in pixels) of all photos;

and the average number of iterations per resolution level. Note

that the errors account also for discretization issues during

rasterization, and that it does not correspond to the final

global registration error; it is the error considering the already

registered photos when each target photo was aligned.
As can be noticed from these values, counterintuitively, the

coffee mug had the highest errors. This was probably due

to the straight cylindrical shape (while the others are curved

66

(a) handmade bottle (b) hand-painted vase (c) coffee mug (top) and same model with the
inverse alignment sequence (bottom)

Fig. 6. Ray-traced colored models.

in regards to the vertical axis), or the blurry drawings that,

when viewed from different angles, might mislead the contour

extraction algorithm.

Another remark concerns the ordering in which the photos

are aligned. To make it clear that it should not have a large

impact on the method - unless of course in cases like the bottle

as stated above - we have also texture the coffee mug using

the inverse photo ordering. From Table I we note that it had

a slight higher error, which is mostly attributed to the manual

rough alignment. Visually both textured models are practically

identical (Fig. 6 (c)).

Fig. 9. Rendering of the final toy model (left) and two input photos (right).

Finally, to demonstrate that the method can also be extended

to a more generic scenario, we have produced a model of a toy

character (Fig. 9). Differently from the previous datasets, in

this case the inner silhouettes of the model’s geometry were

also used to guide the alignment. However, since this was

not the main goal of this work, these extra contours were

extracted in a naive way - edge detection on the rendered

image - leading to the small misalignments in the final model.

Note that the final model was actually downsampled since it

contains considerably less texture details in comparison to the

others.

A. Limitations

In this section we discuss the limitations only inside the

scope of the low-geometric features proposal. In the following

section we also suggest some improvements to the method.

First, the initial condition must not be very far from the

ideal registration. All the same, it usually does not take more

than 15-20 seconds to set the worst case photos. From this

configuration to the final registration the camera parameters

undergo great variations, hence, it would be virtually impossi-

ble (or at least extremely laborious) to achieve the same result

manually.

Another limitation is that the method cannot handle well

some situations, like the dent on the bottle dataset, because

the geometric feature is not apparent as a contour from any

viewpoint. Apart from this special case, there is still a small

77

TABLE I
DATASETS DESCRIPTION

model tris (orig) tris (final) photos mean error max error 400× 268 800× 536 2200× 1474
Coffee mug 240K 1.9M 6 3.04 8.48 9 11 16
Coffee mug (inverse) 240K 1.9M 6 3.34 10.2 9 10 15
Bottle 115K 2.7M 6 1.12 3.14 10 12 14
Vase 216K 3.4M 5 0.92 2.10 9 10 16
Toy 1.1M 813K 6 2.43 6.41 7 9 13

amount of misalignment on other regions, even though in a

much finer scale. As discussed previously (Section II), there

are no known methods that can achieve a perfect registration

for most practical cases, and the fine-tuning is usually carried

out in a pos-processing stage [6], [10].

Finally, if no relevant information can be extracted that is

preserved throughout the photos, the method will probably fail.

We believe it is possible to align based not only on painted or

carved contours, but also on features such as paint weariness or

scratches for example; however, the method will only work if

it is possible to clearly extract the same contours from different

angles.

VII. CONCLUSIONS

We have presented a method to register high-resolution

photos onto 3D models that lack geometric features. The

strategy works in an incremental “shoot and register” way,

being highly suitable for on site digitalization campaigns.

After setting an initial approximative camera position for each

photo, the registration is automatic, and immediate feedback

is possible.

The elected framework uses a combination of outer and

inner contours from the rendered model and the photos.

To avoid common pitfalls with the standard optimizations

methods, we described a variation of the Levenberg-Marquardt

formulation that uses a smoothed function as minimization

criterion, and is able to handle difficult cases arising from the

proposed target applications. We are able to produce high-

quality textured models in the order of tens of minutes.

A. Future works

We strongly believe that the correspondences could be

greatly improved with better descriptors, such as extracting

corners or parametric curves from the textures, for example.

This point would specially improve the interactive process by

driving the initial guess towards a more automatic approach.

Likewise, another option is to attribute different weights

to the outer and inner contours. Excess of texture details

might strongly influence the optimization method, if the inner

contours have higher priorities over the external ones, the

camera parameters might be wrongly matched due to incorrect

perspective correspondence.

ACKNOWLEDGMENT

The authors would like to thank the colleagues from the

Visual Computing Lab (CNR-Pisa) for their help and support

on using their texture blending software. This work was

supported by Rio de Janeiro’s research funding agency -

FAPERJ.

REFERENCES

[1] P. J. Neugebauer and K. Klein, “Texturing 3d models of real world
objects from multiple unregistered photographic views,” Computer
Graphics Forum, vol. 18, no. 3, pp. 245–256, 1999.

[2] K. Matsushita and T. Kaneko, “Efficient and handy texture mapping on
3d surfaces,” Comput. Graph. Forum, vol. 18, no. 3, pp. 349–358, 1999.

[3] H. P. A. Lensch, W. Heidrich, and H.-P. Seidel, “A
silhouette-based algorithm for texture registration and stitching,”
Graphical Models, vol. 63, no. 4, pp. 245 – 262,
2001. [Online]. Available: http://www.sciencedirect.com/science/article/
B6WG3-45FC0BR-4/2/48af481b257e05268d210ebafdd8221d

[4] L. Liu, I. Stamos, G. Yu, G. Wolberg, and S. Zokai, “Multiview
geometry for texture mapping 2d images onto 3d range data,” in CVPR
’06: Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 2293–2300.

[5] M. Corsini, M. Dellepiane, F. Ponchio, and R. Scopigno, “Image-
to-geometry registration: a mutual information method exploiting
illumination-related geometric properties,” Computer Graphics Forum,
vol. 28, no. 7, pp. 1755–1764, 2009. [Online]. Available: http:
//vcg.isti.cnr.it/Publications/2009/CDPS09

[6] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or, “Seamless
montage for texturing models,” Computer Graphics Forum (Eurograph-
ics), vol. 29, no. 2, pp. 479–486, 2010.

[7] M. Callieri, P. Cignoni, M. Corsini, and R. Scopigno, “Masked photo
blending: mapping dense photographic dataset on high-resolution 3d
models,” Computer & Graphics, vol. 32, no. 4, pp. 464–473, Aug 2008,
for the online version: http://dx.doi.org/10.1016/j.cag.2008.05.004.
[Online]. Available: http://vcg.isti.cnr.it/Publications/2008/CCCS08

[8] N. Bannai, A. Agathos, and R. B. Fisher, “Fusing multiple color images
for texturing models,” in Proceedings of the 3D Data Processing,
Visualization, and Transmission, 2nd International Symposium, ser.
3DPVT ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.
558–565. [Online]. Available: http://dx.doi.org/10.1109/3DPVT.2004.67

[9] M. Chuang, L. Luo, B. J. Brown, S. Rusinkiewicz, and M. Kazhdan,
“Estimating the laplace-beltrami operator by restricting 3d functions,” in
Proceedings of the Symposium on Geometry Processing. Eurographics
Association, July 2009, pp. 1475–1484.

[10] M. Dellepiane, R. Marroquim, M. Callieri, P. Cignoni, and R. Scopigno,
“Flow-based local optimization for image-to-geometry projection,” IEEE
Transactions on Visualization and Computer Graphics, vol. 99, no.
PrePrints, 2011.

[11] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella,
“Suggestive contours for conveying shape,” ACM Trans. Graph.,
vol. 22, pp. 848–855, July 2003. [Online]. Available: http://doi.acm.
org/10.1145/882262.882354

[12] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, pp. 679–698, November 1986.
[Online]. Available: http://portal.acm.org/citation.cfm?id=11274.11275

[13] K. Madsen, H. B. Nielsen, and O. Tingleff, “Methods for non-linear
least squares problems,” Richard Petersens Plads, Building 321, DK-
2800 Kgs. Lyngby, p. 60, 2004, 2nd edition.

[14] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” Cornell Computing and Information Science, Tech.
Rep., 2004. [Online]. Available: http://hdl.handle.net/1813/5663

[15] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

88

