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Abstract

We present a flexible and highly efficient hardware-assisted volume renderer grounded on the original Projected

Tetrahedra (PT) algorithm. Unlike recent similar approaches, our method is exclusively based on the rasterization

of simple geometric primitives and takes full advantage of graphics hardware. Both vertex and geometry shaders

are used to compute the tetrahedral projection, while the volume ray integral is evaluated in a fragment shader;

hence, volume rendering is performed entirely on the GPU within a single pass through the pipeline. We apply a

CUDA-based visibility ordering achieving rendering and sorting performance of over 6 M Tet/s for unstructured

datasets. Furthermore, as each tetrahedron is processed independently, we employ a data-parallel solution which

is neither bound by GPU memory size nor does it rely on auxiliary volume information. In addition, iso-surfaces

can be readily extracted during the rendering process, and time-varying data are handled without extra burden.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data
structures and data types.

1. Introduction

Volume rendering has been widely used in a variety of fields,
such as visualization of geological data, fluid simulation and
inspection of medical images. The main objective is to ob-
tain a better insight of the volume data either by rendering
iso-surfaces, i.e. indirect volume rendering, or by rendering
the volume as a semi-transparent material, i.e. direct volume

rendering. In this work we are interested in direct and in-
direct volume rendering of datasets defined over tetrahedral
meshes (see an example of both renderings of a fluid simu-
lation dataset in Figure 1).

The main data sources for volume rendering applications
are numerical simulations of natural phenomena, e.g. Com-
putational Fluid Dynamics (CFD), and measurement devices
such as Magnetic Resonance Imaging (MRI) and Seismic
Tomography. Generally, measurement devices produce reg-
ular volume data, while simulations yield both regular and
irregular data.

Volume rendering of irregular structures has mainly fo-
cused on iso-surface rendering [TPG99, RKE00, KSE04,
Pas04], e.g. numerical simulations for fluid dynamics and

Figure 1: The Fighter dataset rendered with our algorithm

– Hardware-Assisted Projected Tetrahedra (HAPT) – using

direct and indirect volume rendering.
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tensor fields in geosciences [Zeh06]. Even so, direct volume
rendering is also employed in important applications such
as the visualization of geodynamics phenomena of mantle
convection [CZY∗08].

In this paper we present HAPT – Hardware-Assisted Pro-

jected Tetrahedra – an irregular volume rendering method
based on the original PT algorithm [ST90] and completely
developed to exploit programmable graphics hardware. We
address the visibility ordering problem using a fast quick-
sort algorithm [CT08] adapted to our scenario and imple-
mented on nVidia’s Compute Unified Device Architecture
(CUDA) [NVI07a]. Once the cells are sorted, our approach
uses vertex, geometry and fragment shaders to perform the
original PT algorithm entirely in a single GPU pass, while
taking full advantage of processors dedicated to triangle ras-
terization. In this way, HAPT has four main features: first, it
performs volume rendering of irregular structures in a single
rendering pass after sorting; second, it consumes almost no
GPU memory since the tetrahedra are streamed to the graph-
ics card; third, in addition to direct volume rendering, iso-
surfaces can be extracted and rendered on-the-fly, and time-
varying data are also easily handled; and finally, HAPT’s
framework allows for easy exchange of its modules, such as
sorting, outside the rendering pipeline, or volume integration
methods, inside the pipeline, providing greater implementa-
tion flexibility.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work on different volume ren-
dering techniques. We present our method in Section 3 and
its results in Section 4. In Section 5, a comparative discus-
sion between our method and other approaches is laid out.
Finally, in Section 6, we conclude our work.

2. Related Work

Cell projection is a simple and efficient method widely used
for direct volume rendering of irregular meshes [WMFC02,
KQE04, SCT06, MMFE06, MMFE07, MMFE08]. One of
the most popular cell-projection technique is the Projected
Tetrahedra (PT) algorithm introduced by Shirley and Tuch-
man [ST90]. The PT method subdivides a tetrahedron pro-
jection into four classes, where for each the tetrahedron cell
is decomposed into a fixed number of triangles in order to
benefit from the graphic card’s rasterization pipeline. How-
ever, due to early hardware limitations, subsequent efforts to
map it to the GPU failed to achieve this premise and had to
resort to auxiliary data structures or multi-pass strategies.

Briefly, PT consists of breaking up each tetrahedron cell
into a set of triangles, and sending them for rendering in a
back-to-front order. The tetrahedron is classified depending
on the shape of the projection, and the classification decom-
poses the projection in one to four triangles. Figure 2 shows
an example of a class 1 projection; in this case, vertex v′3, i.e.
vertex v3 projected, falls inside the projected face {v′0v′1v′2}
generating three triangles for rasterization.

Figure 2: One example of class 1 projection of the PT algo-

rithm, where three triangles are generated.

Before rendering the triangles, scalar values for the ray’s
entry and exit points, as well as its traversed distance inside
the tetrahedron, are computed for each vertex. These values
are interpolated during rasterization, making it possible to
compute an approximation of the volume ray integral using
regular triangle rasterization. For further details we refer the
reader to the original paper [ST90].

Wylie et al. [WMFC02] presented the first GPU adap-
tation of the PT algorithm using a vertex shader, dubbed
GPU Accelerated Tetrahedra Renderer (GATOR). In their
approach, a basis graph is employed to perform triangle de-
composition on the GPU in such a way that all cases are
treated by the same vertex shader. The main advantage of
this approach is the creation of a graphics primitive to han-
dle tetrahedra. However, each tetrahedron projection has to
be computed five times, since the projections are performed
inside the vertex shader and the basis graph has five vertices.

Both GATOR and the original PT algorithm share the
issue of poorly approximating the final pixel color by av-
eraging the entry and exit scalar values. Quality can be
greatly improved by evaluating the physical interaction of
light rays with the volume through integration [WM92]. One
way to avoid an expensive integral computation during ren-
dering is to pre-compute and store the integration values
in a pre-integration table. Kraus et al. [KQE04] presented
an artifact-free PT rendering in perspective mode by apply-
ing a logarithmic scale for the pre-integration table. An-
other work aiming to improve this method is the partial

pre-integration technique introduced by Moreland and An-
gel [MA04], where the pre-computation of the integral equa-
tion does not depend on the transfer function.

Marroquim et al. [MMFE06,MMFE08] further improved
the GATOR method by removing the redundancy of their
basis graph and adding a better approximation of the final
color. Their algorithm, called Projected Tetrahedra with Par-

tial Pre-Integration (PTINT), relies on a two-pass GPU ap-
proach. In the first step the tetrahedra projections are com-
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puted in the GPU and brought back to the CPU for sorting,
and in the second step the triangles resulting from the pro-
jections are rasterized. The PT classification scheme is done
in the first step using a truth table, as in GATOR. However,
the PTINT method extended this classification table, naming
it the ternary truth table, by considering all possible pro-
jection permutations, and thus treating also the degenerated
cases. The final color computation is improved by employ-
ing the partial pre-integration technique, in contrast to the
average scalar method of PT and GATOR. The main prob-
lem of the PTINT approach is a high cost to read data back
from the GPU, imposed by the two-pass technique. In this
paper we introduce a single-pass GPU method, removing
both the need of reading back from the GPU of the PTINT
approach, and the auxiliary basis graph structure of GATOR.

Another common approach for volume rendering is
ray casting. In this image-order strategy, for each pixel,
the volume ray integral is computed by casting a ray
through the volume, usually in a front-to-back order. Ef-
ficient ray-casting algorithms can also be achieved using
GPUs, such as the Hardware-Based Ray-Casting algorithm
(HARC) [WKME03]. Here, a multi-pass technique is em-
ployed, where for each pass a fragment shader computes
the ray integral for a single traversal. Intermediate results
are written to texture targets and read in subsequent ren-
dering passes to update the ray information. The write-to-
buffer operations avoid moving information back to the CPU
eliminating most data transfer overhead. Unfortunately, it
consumes large amounts of GPU memory to store adja-
cency information, constraining the maximum allowed size
of working data. Espinha and Celes [EC05] further improved
the original HARC algorithm reducing memory consump-
tion and employing the partial pre-integration technique.
Nonetheless, memory requirements can still be prohibitive
for large volumes and time-varying datasets.

Since direct volume rendering algorithms involve com-
positing, they depend on a correct traversal order for a given
viewpoint. On the one hand, ray-casting algorithms employ
an adjacency graph in such way that when a ray leaves a cell
it has enough information to find the next one; on the other
hand, cell-projection algorithms usually compute an approx-
imate ordering in object space. Even though there are meth-
ods for exact ordering of cells [SMW98, KE01, CMSW04],
they are quite complex and time consuming. A first approach
aiming to combine the better of cell-projection and ray-
casting techniques is the View-Independent Cell Projection

(VICP) of Weiler et al. [WKE02]. By performing ray cast-
ing only inside each projected cell, the VICP achieves high
quality image while consuming less memory than HARC.
Callahan et al. [CICS05] present an approximate sorting ap-
proach named Hardware-Assisted Visibility Sorting (HAVS),
which uses a hybrid volume rendering strategy such as the
VICP method. First, volume faces are sorted in object-space
by their centroids in the CPU and rendered using regular tri-
angle rasterization. Next, volume ray integration is evaluated

in image space, while a refined sorting method is carried out
using their k-buffer technique in the GPU, where k deter-
mines the sorting precision, balancing between performance
and quality. One disadvantage is that by embedding sorting
with rendering it limits HAVS to a fixed framework, pro-
hibiting the algorithm to use an exact ordering technique.

3. Hardware-Assisted Projected Tetrahedra

HAPT’s framework is presented in Figure 3. First the vis-
ibility order is computed using any CPU or GPU method.
The ordered tetrahedra are streamed to the graphics pipeline
through the vertex shader (VS), and decomposed into trian-
gles in the geometry shader (GS). The triangle primitives
are sent down the pipeline with scalar values and traver-
sal length as color attributes for the direct volume render-
ing (DVR) technique, and face normals for the iso-surface
rendering (ISO) technique. This process brings a great ben-
efit highly desirable for a hardware-based approach: fitting a
volumetric primitive that is well supported by graphics hard-
ware. Finally, we use a fragment shader (FS) to evaluate the
volume ray integral. Note that, after sorting, the whole ren-
dering algorithm is performed in a single pass, performing
the original PT technique entirely on the GPU, while taking
full advantage of triangle rasterization dedicated processors.

Figure 3: HAPT’s Framework divided into vertex (VS), ge-

ometry (GS) and fragment (FS) shaders. Any sorting method

can be used prior to rendering, for example: quicksort in

CUDA; STL-based introsort on the CPU; or the MPVONC

algorithm on the CPU (see Section 3.1 for details).

The rendering pipeline is depicted in Figure 4. An im-
portant point about the data flow is that, since each tetrahe-
dron is processed independently and in a parallel fashion, it
fits perfectly within the streaming paradigm. In addition, no
auxiliary volume data structure needs to be accessed during
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Figure 4: HAPT’s pipeline: sorted tetrahedra are streamed as point primitives to the GPU; decomposed into triangles in the

geometry shader (GS); and finally, during rasterization, the ray integral is computed per fragment to compose the final image.

rendering as each primitive contains all information required
for processing. This is specially important because it reduces
GPU data storage in such a way that there is no restriction
to render a volume due to GPU memory requirements. The
graphics card memory is limited when compared to the CPU
memory, for instance a volume with several million tetrahe-
dra can be rendered by a ray-casting or cell-projection ap-
proach on the CPU, but fails to be stored on the GPU when
using the HARC or PTINT methods.

The streaming feature of HAPT allows it to handle time-
varying data trivially as a sequence of static volumes per
frame (see Section 3.5 for details). Moreover, it minimizes
the data fetching latency, which usually imposes a high
transfer overhead and, consequently, significantly decreases
the algorithm’s performance. In the next sections each fea-
ture and step of the algorithm is presented.

3.1. Sorting

We have tested our algorithm with four different sorting
methods for comparison: the STL-based introsort [PLMS00]
on the CPU; the MPVONC [Wil92], Meshed Polyhedra Vis-

ibility Ordering for Non-Convex meshes, on the CPU; the
bitonic sort on the GPU using CUDA [NVI07b]; and the
quicksort on the GPU using CUDA [CT08]. Except for the
MPVONC, the other three strategies perform approximate
sort using the tetrahedra centroids.

For the CUDA-based algorithms, the ordered tetrahedron
indices are written directly into a GPU data buffer or ver-

tex buffer object (VBO), avoiding the transfer back to the
CPU. In case the data is too large to fit in a VBO, any of the
methods can read back to the CPU and stream the tetrahe-
dra down the pipeline. Also, since the bitonic CUDA sorting
works only with power-of-two arrays, we enlarge the indices
buffer to fit the nearest corresponding size, making it slower
than the CUDA quicksort counterpart.

For the exact ordering algorithm on the CPU, i.e.
MPVONC, it is important to note that it needs two auxil-
iary data structures, the adjacency list and the precomputed
face normals; this extra information can increase the mem-
ory consumption on the CPU by around four times the vol-
ume size.

There are some degenerated cases where the MPVONC
method does not perform a correct visibility ordering,

notwithstanding, it works for most meshes [KQE04]. On
the other hand, the centroid sorting usually introduces an er-
ror, where in some cases the ordering of adjacent tetrahedra
can be inverted. Fortunately, this error is still very low. As
a matter of fact, we noticed no visual difference from the
MPVONC, let alone any artifacts.

To support this last statement, we have run a series of
tests to estimate the error of centroid sorting in regards to the
MPVONC. Table 1 presents the average and maximum error
for various datasets, described in Section 4. The errors are
computed per color channel separately, therefore the second
column (Max. Error) is the maximum difference between all
channels of all corresponding pixels. The last column (Diff.
Pixels) gives the percentage of different pixels, that is, pixels
between images that are not an exact match in all three RGB
channels. For all statistics, only pixels with error above zero
are taken into account, thus correct and background pixels
are not included. An error of approximately 1.2%, is equiv-
alent to a difference of 3 units in the RGB domain [0, 255]
for one specific color channel of a given pixel. Usually the
average error is approximately of one single unit, becoming
imperceptible for visualization purposes.

The statistics for Table 1 were gathered by rendering with
direct volume rendering using both methods (centroid sort-
ing and MPVONC) from at least 100 different viewpoints
sampled over a sphere. It is also important to notice that the
numbers may vary with different transfer functions, even so,
we have noticed no discrepancies from the presented values.
In this manner, the centroid method is still a good alternative
for accelerating rendering speed and cutting down on mem-
ory space while introducing a very low error. Since for static
data the error is already visually imperceptible even when
there are many different pixels, this method is even more ad-
equate for interactively visualization of time-varying data.

Dataset Max. Error Avg. Error Diff. Pixels

blunt 1.961% 0.4069% 6.04%
post 2.353% 0.4245% 33.13%
spx2 1.569% 0.3985% 8.13%
delta 5.098% 0.5895% 14.25%
torso 1.176% 0.3933% 1.51%

fighter 1.569% 0.3943% 2.02%

Table 1: Error between centroid sorting and MPVONC.
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3.2. Projection

To simplify the data throughput to the GPU, a tetrahedron is
sent as a vertex with three attributes, that is the other three
vertices are passed as texture coordinates. For each tetrahe-
dron’s vertex the attributed scalar value is also passed as the
w coordinate. Note that different strategies, such as other
geometric primitives, can also be used to send the tetrahe-
dra through the pipeline; however, we found point primitives
with texture coordinates to be the most efficient approach.

In the geometry shader, the tetrahedron is decomposed
into triangles and the three values associated with each ver-
tex, the traversal length l and scalar front s f and back sb,
are computed using the same scheme as the original PT. To
compute the correct tetrahedron projection, we rely on the
ternary truth table from PTINT’s classification strategy, de-
termining the correct projection case with four cross prod-
ucts and a table look up. For further details we refer the
reader to the original paper [MMFE08].

These three values (s f , sb and l) are computed depend-
ing on the projected vertex. There are two types of projected
vertices: the thick and thin vertices. The thick vertex is de-
fined as the entry point of the tetrahedron where the ray
traverses the maximum distance l. Depending on the clas-
sification case, the thick vertex may not be one of the four
projected tetrahedron’s vertices, hence its scalar value has to
be interpolated. Analogously, it might be necessary to com-
pute the distance l in cases where l is not one of the edge
lengths. Excluding the thick vertex, all others are the pro-
jected tetrahedron’s vertices, named thin vertices, and have
s f = sb, which are the original scalar value, and l = 0, since
the ray traverses no distance in these extremities. In the ex-
ample given in Figure 2, v′0, v′1 and v′2 are the thin vertices
while v′3 is the thick vertex. The classification table stores not
only the number of generated triangles, but the cases where
the traversal distance l has to be computed and scalar values
have to be interpolated for the thick vertex.

The scalar values (s f and sb) and traversal length (l) are
stored as RGB colors of each corresponding vertex in order
to pass the information from the triangles generated by the
geometry shader along to the fragment shader.

3.3. Ray Integration

When a triangle is rasterized (one tetrahedron cell can be
decomposed in one to four triangles), the scalar values and
traversal length are interpolated per fragment. This interpo-
lation is an approximation of the precise integration values
for each cell used in the integral equation. The interpolated
values (s f , sb and l) are employed per fragment to compute
the ray integration through the partial pre-integration tech-
nique, in contrast to using a simple averaging scheme as
done by the original PT and GATOR. In this technique the
pre-computation of the ray integral equation does not de-
pend on the transfer function, and thus it is pre-compiled

within our application. Inside the fragment shader a table is
accessed by two indices computed using the traversal length
l and the front and back colors. In turn, these colors can be
promptly extracted from the transfer function using the s f

and sb values. Note that the partial pre-integration in frag-
ment shader can be replaced by a better or faster integration
method.

Even though this method is slower than computing the av-
erage value, it better approximates the ray integral improving
the rendering results. Figure 5 depicts a model rendered with
our algorithm – HAPT.

Figure 5: Direct volume rendering of the spx2 dataset.

3.4. Iso-Surface Rendering

The simple and flexible data flow of HAPT permits addi-
tional effects that are not trivially implementable with other
methods. One example is interactive iso-surface rendering.
While most approaches, such as PTINT, HAVS and HARC,
are able to render iso-surfaces on a per-pixel basis (for each
fragment determines if the iso-surface is in range), HAPT
allows for not only this strategy, but also for an on-the-fly
marching tetrahedra approach. Using the latter, normals can
also be extracted to provide illumination effects. Since the
geometry shader processes on a per tetrahedron basis, the
iso-surface normals are restricted to faces, resulting in a flat
shading. To achieve a smoother Phong-like effect it would be
necessary to carry also adjacency information and compute
normals per vertex from the incident faces, greatly impacting
the memory consumption and rendering performance.

Within the geometry shader the iso-surface can be eas-
ily extracted from the tetrahedron and sent for rendering as
one or two triangles. This method has two advantages: first,
the iso-surface can be interactively defined; and second, it is
possible to blend indirect and direct volume rendering gen-
erating a hybrid visualization, as illustrated in Figure 6.
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(a) (b)

Figure 6: Torso dataset rendered with direct volume render-

ing and iso-surfaces with (a) and without (b) illumination.

3.5. Time-Varying Rendering

To further demonstrate the algorithm’s flexibility, we de-
scribe how it can be applied to time-varying datasets, where
the volume is a sequence of animation frames, and each
frame is a static volume.

As aforementioned in the beginning of Section 3, the us-
age of VBOs is optional and not suitable for models that do
not fit on the GPU memory; hence, for time-varying datasets,
the frames are not stored in memory but streamed as separate
static volumes.

Additionally, we apply an early discard test in the vertex
shader to remove empty tetrahedra, i.e. cells with all vertices
mapped to zero opacity in the transfer function. Note that
the volume must have large empty regions to profit from the
additional texture fetches to discard the tetrahedra in vertex
shader.

Figure 7 depicts two frames of a time-varying dataset,
composed of 150 M tetrahedra over the whole animation.
Applying the above modifications to HAPT’s framework, we
are able to interactively render this sequence at 17 fps.

4. Results

We have tested HAPT with the following irregular datasets:
Blunt Fin (blunt); Oxygen Post (post); modified Super
Phoenix (spx2); Delta Wing (delta); Human Torso (torso);
Langley Fighter (fighter); and time-varying Turbulent Jet
(turbjet). The dataset sizes and timings are presented in Ta-
ble 2. The timings are given using a 5122 pixel viewport and
considering that the model is constantly rotating. All timings
were performed in an Intel Xeon E5345 CPU with 4 GB of
RAM and a GeForce 8800 GTX graphics card with 768 MB
of VRAM (GPU memory).

For these results we have used either direct volume ren-
dering, iso-surface rendering, or both (see Figure 6 and 8).
For the last two cases, we have fixed a maximum of four
iso-surfaces. One issue is that the geometry shader requires

Figure 7: Two of the 150 frames from the time-varying tur-

bulent jet dataset (1 M tet per frame) rendered with HAPT.

the specification of the maximum number of output vertices,
which even when not fully used has an expressive impact
on performance. This implies in a significant overhead when
rendering with both methods (last two columns of Table 2).
Even though it is unlikely that all four iso-surfaces will cross
one tetrahedron at the same time, we have accounted for this
to be consistent with the results, but efficiency can be greatly
improved without considerably limiting the algorithm.

Table 3 compares our results with other GPU-based di-
rect volume rendering algorithms (without extracting iso-
surfaces nor having any illumination effect) using the spx2
dataset shown in Figure 5, where the sorting and drawing
times are further detailed. The compared algorithms are:

• HAPT – Our approach, Hardware-Assisted Projected
Tetrahedra, with four different sorting methods;

• HAVS – Hardware-Assisted Visibility Sorting [CICS05]
with two k-buffer sizes;

• PTINT – Projected Tetrahedra with Partial Pre-Integrati-
on [MMFE08];

• GATOR – GPU Accelerated Tetrahedra Rende-
rer [WMFC02];

• HARC – Hardware-Based Ray Casting with normal
pre-integration [WKME03] and partial pre-integrati-
on [EC05].

The original PTINT algorithm uses an approximate
bucket sorting during rotation. Here we take timings only for
the complete CPU sorting; and even though PTINT’s sort
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Size Dir. Vol. Rend. Iso-surface Rend. DVR + ISO

Datasets # Verts # Tet FPS M Tet/s FPS M Tet/s FPS M Tet/s

blunt 40 K 187 K 19.2 3.59 25.5 4.78 7.7 1.44
post 110 K 513 K 8.1 4.15 11.9 6.10 3.0 1.51
spx2 150 K 828 K 7.4 6.11 8.2 6.76 1.9 1.57
delta 211 K 1 M 4.5 4.52 6.0 6.01 1.5 1.51
torso 168 K 1.08 M 5.6 6.08 7.2 7.78 1.7 1.82

fighter 256 K 1.40 M 4.2 5.83 5.0 7.06 1.1 1.60
turbjet 212 K 1.01 M 17.5 17.67 n/a n/a n/a n/a

Table 2: Dataset sizes and total timing of our algorithm applying direct volume rendering, iso-surface rendering or both.

Figure 8: Direct volume rendering of the torso dataset

(without iso-surfaces).

is equivalent to the STL sort method used by GATOR and
HAPTS, it still transfers data from the GPU for reordering
during this step. Moreover, in both cases for HAVS, sort-
ing time accounts only for the CPU pre-ordering, while for
the HARC approaches there is no sorting step, since ray-
casting algorithms traverse the entire volume using an adja-
cency data structure.

An important remark is that HAPT has better render-
ing time than the compared algorithms, including cell-
projection, ray-casting or hybrid approaches, and it does not
store the volume on the GPU memory as done by PTINT
and HARC. On the other hand, HAVS and GATOR stream
the volume similar to our approach, but perform a multi-pass
or redundant streaming. The main variation in HAPT’s per-

Algorithm Sort Draw FPS M Tet/s

HAPTQ 0.03 0.09 7.4 6.11
HAPTB 0.04 0.09 6.9 5.73
HAPTS 0.08 0.09 5.4 4.50
HAPTM 0.13 0.09 4.4 3.61
HAVS2 0.09 0.11 5.0 4.14

HAVS6 0.09 0.12 4.7 3.94
PTINT 0.19 0.20 2.4 2.06
GATOR 0.08 0.83 1.1 0.93
HARCn n/a 0.22 4.6 3.82
HARCp n/a 0.28 3.5 2.90

Table 3: Timings for direct volume rendering of the spx2

model (828 K tet) with different algorithms and criteria.

Sorting and drawing columns are in seconds. Variations for

HAPT are Quicksort, Bitonic-sort, STL-sort, MPVONC; for

HAVS k-buffer are k = 2 and k = 6; and for HARC are with

normal and partial pre-integration.

formance comes from the shape of the tetrahedra, which in-
fluences the probability of the cell falling in each of the pro-
jection cases, dictating the number of generated triangles.

Table 4 specifies frames and tetrahedra per second for
the torso and fighter datasets using HAPT as well as for
the other methods compared. All results were taken for di-
rect volume rendering flushing the graphics pipeline every
frame, and thus not profiting from continuous streaming.
The volume streaming uses VBOs for HAPT, HAVS and
GATOR (PTINT and HARC read the volume from texture
and can not benefit from VBOs and continuous streaming).
This comparison shows that HAPT is faster even when deal-
ing with datasets with more than one million cells.

One way to test the streaming performance of our algo-
rithm for larger datasets (tens of millions of cells) is to render
time-varying data as a sequence of static volumes. We tested
HAPT using continuous streaming and an early discard test,
explained in Section 3.5, to render the turbjet dataset (Fig-
ure 7). This time-varying volume consists of 150 frames
with 1 million cells per frame, thus the entire animation is
composed of 150 million different cells (see Table 2 for de-
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torso fighter
Algorithm 1,082 K Tet 1,403 K Tet

FPS M Tet/s FPS M Tet/s

HAPTQ 5.6 6.08 4.2 5.83
HAPTB 4.3 4.68 3.6 5.09
HAPTS 3.9 4.25 2.9 4.10
HAPTM 1.6 1.73 1.2 1.62
HAVS2 3.7 4.01 2.9 4.12

HAVS6 3.3 3.60 2.7 3.89
PTINT 1.3 1.47 0.9 1.31
GATOR 0.7 0.76 0.4 0.56
HARCn 4.8 5.19 3.8 5.33
HARCp 3.9 4.22 3.0 4.21

Table 4: Time comparison between HAPT and previous al-

gorithms for the torso and fighter datasets.

tails). For this dataset size, algorithms that rely on storing
the whole volume on the GPU memory, such as PTINT and
HARC, would require uploading and downloading different
chunks of animation frames several times, and consequently
would suffer a major performance loss.

Exemplary renderings of our algorithm are shown in Fig-
ures 7, 8, 9, and 10.

5. Discussion

In this section we highlight the main differences, advantages
and disadvantages of our approach from previous methods.

GATOR and PTINT are the most similar methods to
HAPT since they also built upon the original PT algorithm.
Nevertheless, both previous algorithms rely on strategies to
trick the graphics card in rendering tetrahedra. In contrast,
HAPT at the same time avoids the data redundancy when
streaming the volume imposed by GATOR, and storing the
dataset on the GPU memory as done by PTINT. Our ap-
proach also avoids PTINT’s two-pass approach by rendering
in a single pass through the graphics pipeline.

The usage of the partial pre-integration technique im-
proves the volume rendering quality of GATOR and the orig-
inal PT, placing our algorithm in the same quality category
of PTINT. When compared with ray-casting approaches,
such as HARC, and a finer interpolation scheme, such as
HAVS, HAPT presents the rendering problems of interpolat-
ing scalar values and traversal length at extremities inherited
from the PT idea. This problem is more pronounced when
rendering regular volumes converted to tetrahedra, as done
in the turbulent jet sequence shown in Figure 7.

In terms of memory consumption, HAPT requires a fixed
and very small amount of GPU memory to store the transfer
function, classification table and the partial pre-integration
table. Note that none of them are related to the volume

size being rendered, yielding a total memory usage of about
10 KB. When streaming the volume using VBOs, our ap-
proach consumes additional GPU memory proportional to
the dataset size. The memory-aware option is to send the
primitives via streaming without using VBOs, losing 10%
of the rendering performance, but avoiding memory limita-
tions. The options of GPU memory usage by rendering prim-
itives or applying VBOs can also be explored by GATOR
and HAVS methods, since they also rely on streaming the
volume to perform rendering. In contrast with these meth-
ods, HARCn and HARCp require the significant amount of
144 bytes/tet and 96 bytes/tet, respectively. Moreover, even
an algorithm that has low memory footprint, such as PTINT,
would require 3 GB of GPU memory to fit the entire turbu-
lent jet sequence.

Although different in nature, HAVS is still one of the most
popular irregular volume renderers. One point in favor of
HAVS is that it performs a more accurate visibility sorting,
when compared with the three centroid sort methods of our
approach (HAPTQ, HAPTB and HAPTS). However, our im-
plementation offers a flexible pipeline, has a gain of approx-
imately 50% in frame rates in the case of HAPTQ x HAVS6,
and does not require multiple rendering passes. This latter
characteristic may impact the overall rendering performance
depending on the graphics card.

In addition, our strategy totally decoupled sorting from
rendering, which leads to several benefits over previous al-
gorithms. PTINT relies on bringing the data back to the CPU
to be sorted in between passes. HAVS has sorting embedded
with rendering and relies on two different sorting passes, one
on the CPU and one on the GPU. HARC, as any ray-casting
method, does not require to sort the volume cells, but on the
other hand, it relies on auxiliary data structures that increases
memory fetches and, consequently, decreases rendering per-
formance. Moreover, the volume have to be loaded to the
GPU texture memory, further limiting the volume size.

6. Conclusions

We have presented an efficient GPU approach of the PT al-
gorithm called HAPT – Hardware-Assisted Projected Tetra-

hedra – that offers a series of advantages over previous meth-
ods. The algorithm is flexible and achieves higher frame
rates than other volume rendering approaches by avoiding
multiple rendering passes and data transfer from the GPU
to the CPU, and not requiring auxiliary data structures. The
flexibility and modularity provided by the pipeline allows
for easy mixing and matching of other strategies, such as
the sorting method and the partial pre-integration technique.
Even more, iso-surfaces with normals can be extracted on
the fly using the marching tetrahedra method. Finally, the
algorithm is not limited by the amount of GPU memory
since the vertices and cells are streamed to the GPU in-
stead of keeping the whole volume in texture memory. This
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(a)
(b)

(c)

Figure 9: Direct volume rendering with illuminated iso-surfaces: (a) post; (b) blunt; (c) fighter (front view of Figure 1).

is not only desirable for large volumes, but even necessary
for time-varying datasets.

Most of the efficiency comes from the fact that the al-
gorithm follows closely the rasterization pipeline, profiting
from the graphics hardware specialization on triangle ren-
dering. This tight fit with the graphics pipeline makes the
method less prone to becoming obsolete with new hardware
improvements, considering that new trends will probably al-
low for extensions of HAPT instead of substantial reformu-
lations. For instance, further enhancements may be possible
with new hardware functionalities such as more control over
the blending and depth operations.

Moreover, an improved geometry shader would allow nor-
mals per vertex to be computed (enabling iso-surface Phong
shading), and better performance results when mixing direct
and indirect volume rendering.

The algorithm has a few important peculiarities that we
find pertinent to share with the reader. First, most of the
improvements over previous cell-projection methods is re-
lated to the evolution of graphics hardware, so the geometry
shader is mandatory. Second, the visibility ordering is still
the main disadvantage for cell-projection algorithms; how-
ever, even if we have not solved this specific problem, the
flexibility and modular pipeline assists on keeping up with
new improvements of sorting methods. It is important to note
that even with the MPVONC implementation in the CPU,
HAPT is able to achieve considerable high frame rates. Al-
though the centroid method introduces a very low error, one
obvious pursue is a GPU implementation of the MPVONC,
even if known not to be trivial.

In summary, we believe that the combination of flexibil-
ity and efficiency, due to the high adaptivity to the graph-
ics card’s rendering pipeline, brings the algorithm to a dis-
tinguished level of usability. The fact that the data can be
streamed is also an important point in making this method
suitable for possible out-of-core strategies, since it facilitates
the data distribution among processing units.
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Figure 10: Direct volume rendering and illuminated iso-

surfaces of the delta dataset.
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