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Fig. 1. Drawing and handwriting examples using our system in MyPaint software.

Abstract—We present an inexpensive, practical, easy to set up
and modestly precise system to generate computer mouse input in
a similar fashion to a graphics tablet, using webcam, paper, pen
and a desk lamp. None of the existing methods, to our knowledge,
solves the task with all these qualities. Our method detects clicks
using the pen shadow and computes the mouse cursor position by
predicting where the pen tip and its shadow will hit each other.
Our method employs a series of image processing algorithms and
heuristics to extract interest features with subpixel precision,
projective geometry operations to reconstruct the real-world
position, and hysteresis filters to improve stability. We also
provide an algorithm for easy calibration. Finally, the quality
of our method is evaluated with user tests and a quantitative
experiment.

Keywords-vision-based interface; paper-pen technology;
tracking

I. INTRODUCTION

In many applications such as handwriting and drawing,

using the computer mouse as interface may be inappropriate

or even prohibitive, and a graphics tablet would be desired.

However, graphics tablets may be an expensive item for some

users and requiring them to own one is not reasonable. There

are also cases where the user would like to try the application

before buying a proper graphics tablet.

Aiming at this scenario we have devised a low-cost system

to control the computer mouse similarly to a graphics tablet, to

facilitate drawing and handwriting applications (Fig. 1). Our

method only requires a webcam, a sheet of paper, a blue-

capped pen and a desk lamp: it is practical and easy to set up,

not requiring building a special pen or a support for the camera

or the lamp. It is precise enough for drawing applications and

fast in the sense that it can reach a high FPS rate in a single-

threaded implementation in a modern desktop computer, thus

it will not require extra hardware and is not expected to impact

the interactivity of the application.

II. RELATED WORK

There are a lot of similar works attempting to control the

mouse with a webcam, but none with the same setup (color

pen, paper, webcam and desk lamp), and none, to the best of

our knowledge, achieving our balance of ease of use, low cost

and precision.

There are many works [1] [2] [3] that create a human-

computer interface using laser pointers and similar devices,

but none using an ordinary pen as ours. Works such as the

one from Piazza and Fjeld [1] require building a complex

device to set the webcam in an appropriate position (i.e.,

not as easy to set up as ours), while Lee’s [2] requires the

Nintendo Wiimote (i.e., has a comparatively higher cost) and

Derhgawen’s [3], which tracks the laser light on a surface,

is inappropriate, in terms of user interaction, for drawing and

handwriting applications.

There are also works [4] [5] with pen tip tracking (without

the pen cap), though designed specifically for handwriting

applications such as signature recognition, and not for

controlling the mouse cursor. These works, differently from

ours, allow ink on the paper and make no use of the shadow

of the pen: Munich and Perona [4] detect touching using the

ink path, which cannot be used for (instantaneous) mouse

clicks (i.e., only dragging and dropping), must use some sort

of post-processing (inappropriate for a real-time application as

mouse control) and requires more complicated algorithms as

an ink path is much weaker than a shadow from a strategically

positioned light source; while Yasuda et al. [5] use two

cameras and do not detect touching at all, they do signature

recognition considering the movement of the pen in the air as

part of the signature.

Finally, there is a number of works devising systems for

people with disabilities and/or repetitive strain injury by

tracking body parts such as the eye or the hand in the

air [6] [7] [8] or a color pen in the air [9]. Although typically
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Fig. 2. System setup illustration.

more practical and easier to set up (no calibration, fewer

lighting constraints), they are not suitable, in terms of user

interaction, for applications such as drawing and writing.

III. SYSTEM DESCRIPTION

Our system is configured as shown in Fig. 2: The user places

a sheet of white paper over the desk and positions the webcam

on the desk between the paper and the monitor only slightly

above the paper, facing the user. The system is calibrated

by drawing four crosses on the paper, indicating rectification

corners. Mouse clicks are detected by analyzing the shadow

of the pen, so it is often necessary to place a lamp on the

left (supposing the user is right-handed). The pen must have

a blue cap, as the user will use the pen with the cap shut,

never releasing ink on the paper. We have restricted the pen

color to blue in order to minimize the interference with the

user’s hands and with the shadow, also taking advantage of

the ubiquitous character of this sort of pen.

There are a number of reasons for not letting the user write

or draw (with ink) on the paper. First of all, graphics tablet

users usually do not look at the tablet while drawing: The

range of applications in which the user would be required

to actually look at the paper (and not at the monitor) while

drawing or writing is much more limited, as the user would

not generally be able to interact with elements on the screen,

unless they are, for instance, projected onto the paper. Not to

mention that common drawing operations such as as erasing,

moving, scaling, changing the brush or the color would not

synchronize with what is drawn on the paper. Also, in most

of those applications where the user does not need to look

at the monitor, but only at the paper, the software response

does not need to be in real time, i.e., one can draw and

afterwards take a picture using the webcam and rectify, or film

themselves drawing and then process the video. In any case,

this would require completely different methods and would be

application-specific. Secondly, detecting the blue cap is much

easier and less time-consuming than detecting the pen tip, and

ink is one more obstacle in making pen cap tip and shadow

(a) “Normal” mode

(b) “Touchpad-like” mode

Fig. 3. Interaction modes from our implementation. Illustration shows how
the mouse cursor and the mouse range window are moved by the mouse and
the pen.

tracking algorithms correct and precise. A third reason is that,

for a system that controls the mouse, permitting ink would

consume a lot of paper, which is not something we would

like to encourage.

The user interaction in our system is divided in two

steps: The calibration step, when our method computes the

rectification (homography) matrix (Section IV-B); and the

drawing step, in which the pen cap and its shadow are tracked

(Sections IV-C, IV-D, IV-E and IV-F). As with a graphics

tablet, the user can move the mouse cursor without clicking

by moving the pen near the paper, without touching it. A

limitation of our system compared to graphics tablets is the

lack of touching pressure measurement.

Also differently from the graphics tablet, here, as all the

processing is done on 640 × 480 images captured by the

webcam, we do not have enough precision to control the

mouse in screen resolution, so we limit mouse control to

within a WF × HF window of space, to the which we will

refer as “mouse range window”. However, we have designed

our tracking algorithms to have subpixel precision in image

coordinates, so WF and HF can be set to resolutions larger

than that of the webcam. Nevertheless, considering that the

user will usually draw on an A4-sized sheet of paper, it is

better in terms of user interface that this window is not much

larger than 800×600. In this work we use by default 640×480.

In order to move the mouse range window to reach the

whole screen, we have devised two interaction modes in our

implementation (see Fig. 3). In the “normal” mode, the user

moves the computer mouse in order to move the window,

and the pen moves the cursor inside the window. In the

“touchpad-like” mode, the user may raise the pen above a

certain threshold (about 1cm) and return in a different position:

This act will not move the cursor, and the window will be

moved accordingly, thus enabling the user to reach the whole

screen without using the computer mouse, by using the pen

and the paper similarly to a touchpad from a note- or netbook.

Some graphics tablet interfaces also provide this interaction

mode.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Illustration of the overall calibration algorithm. (a) Search the paper in the image using a hierarchical algorithm, yielding an estimate to the paper
intensity. (b) Iteratively predict the intensity of the paper in each pixel as a quadratic function of the position. (c) Comparing the expected paper intensity for
each pixel and the actual intensity of the pixel, classify the pixel as paper or non-paper. (d) Classify segments of non-paper areas as cross or non-cross. (e)
Estimate the cross center first by minimizing intensity after blur. (f) Update center iteratively using a quadratic fit. (g) Classify crosses.

IV. METHOD DESCRIPTION

A. Notation and Preliminary Observations

An image is represented as three signals R(x, y), G(x, y)
and B(x, y) (i.e. the red, green and blue color channels),

quantized in integer values between 0 and 255, with the origin

(0, 0) located at the top-left corner and the y axis oriented

downwards, and (x, y) ∈ ([0, 640)× [0, 480)) ∩ (Z× Z). We

will refer to the sum p(x, y) = R(x, y) + G(x, y) + B(x, y)
as “intensity”. We will conveniently use the abuse of notation

p(r) = p(r1, r2) for r ∈ R
2 (by default the x coordinate

is denoted as r1 and the y coordinate r2) or p(u) =
p(u1/u3, u2/u3) for u ∈ R

3 (homogeneous coordinates).

To make our method work with varied webcam models

and illumination configurations, we perform the following

normalization: For every image line where y ≡ 0 (mod 10),
we compute the mean intensity within the line. These

values are sorted in a list, and we select the 10 lines of

greatest intensity (these lines are very likely to contain part

of the paper). The image is then normalized to satisfy a

mean intensity of 420 in these 10 lines. However, to save

computation time, instead of modifying directly the image,

we change all the thresholds of our method accordingly (i.e.,

all constants described in the following sections are defined

supposing, without loss of generality, that the mean intensity

in these 10 lines equals 420).

All the constants defined in this section were chosen applied

to the blue BIC Cristal pen, it is possible that other pens

require different values. Also without loss of generality, the

method is described supposing the user is right-handed.

B. Calibration

The objective of this step is to find four crosses drawn on

the paper and estimate their centers. Ideally calibration and

drawing should not be separate steps of our system, it should

track crosses simultaneously to pen and shadow, recalibrating

every time the camera or the paper was moved, but currently

our method solves these problems in two separate steps. In

fact, having the paper accidentally moved should not be a

problem as the user is not expected to look at the paper while

drawing or writing. Also, recalibrating automatically could

be complicated as the crosses are often occluded when the

user draws. Our calibration step could also be replaced by

manually selecting the crosses on the webcam image, however,

this would hinder the ease of use of the system.

We chose the sequence of algorithms below and not a

general-purpose feature detector because the cross on the paper

is actually a very subtle feature that appears highly distorted

and blurred due to perspective. The idea of our method for

calibration is to discover first where the paper is and how it

looks like, and then detect any marks that appear on it, no

matter if they are cross-shaped or not.

The first step of cross search is a hierarchical algorithm

to find in the image a region containing reliably only paper

and estimate its intensity (Fig. 4(a)). We divide the image in

4 quadrants, and compute the mean intensity of the pixels

of each quadrant, yielding values μ1, ..., μ4. The quadrant

of greatest mean is selected as the most probable location

of the paper, and the algorithm is repeated for this quadrant.

The algorithm stops when the variance of these means, ε2 =
1
3

∑4
i=1(μi− 1

4

∑4
j=1 μj)

2, satisfies ε2 < σ2

N/4 , where N is the

area of the four quadrants and σ2 = 0.17 · 105 is a multiple

of the variance we expect pixel intensity to have in a region

that contains only paper. At this point, w0 =
∑4

i=1 μi/4 is

the initial estimate for paper intensity.

Then we compute the expected paper intensity for each

pixel (Fig. 4(b)), considering that the paper might not

be homogeneously illuminated. We approximate it as a

quadratic function of the position, in the form w(x, y) =[ x
y
1

]T
R
[ x
y
1

]
, for some right triangular matrix R. Initially

we have R0 =
[
0 0 0
0 0 0
0 0 w0

]
. We compute by linear regression

Ri+1 = argminR
∑

u∈Ωi
(uTRu−p(u))2, where Ωi is the set

of pixels in the form (x, y, 1)T satisfying |uTRiu−p(u)| < 20,

which is our criterion to consider a pixel an inlier of this

quadratic function. This procedure is repeated for 4 iterations.

Additionally, to make the algorithm faster, the i-th iteration

only considers one of every 25−i image lines.

Cross detection is done by a threshold-based segmentation

algorithm (Fig. 4(c)). A pixel is classified as paper if it

is brighter than 0.92w(x, y), or non-paper otherwise. This

classification is dilated (expanding the non-paper areas) using

an 11 × 11 square filter, as crosses are drawn typically thin

and are therefore vulnerable to disruption due to noise; then

connected components (“segments”) of non-paper areas are
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Fig. 5. The calibration procedure classifies areas of the image as paper
(white), cross (blue) or unknown (red). The orange lines link the estimated
centers of the four crosses. Once calibration converges, the user is asked to
confirm calibration, which is done in our implementation by showing the
image above to the user.

identified. Non-paper areas correspond mainly to: Crosses,

noise on the paper and the background (i.e.: the table, the user,

walls, etc.). Segments of non-paper areas can be distinguished

as crosses (Fig. 4(d)) if they respect the following criteria: 1)

More than 50 pixels (so that they are not noise on the paper),

2) Less than 2000 pixels (so that they are not the background)

and 3) the summation of (∂xp)
2 + (∂yp)

2 inside the segment

is greater than 0.25 ·106, where ∂x and ∂y are computed using

Sobel filters.

The first guess for the position of the center of the cross

(Fig. 4(e)) is the pixel of minimum intensity inside the segment

after a Gaussian-blur with parameter σ = 5. This position is

then updated (Fig. 4(f)) by fitting a quadratic function (again in

the form uTRu) estimating this Gaussian-blurred intensity in a

7×7 window and selecting the minimum of the fitted function,

process which is repeated for 5 iterations. This quadratic fit

is weighted using a Gaussian function of the distance to the

center of the window, with parameter σ2 = 5.

If the overall algorithm finds 4 crosses in 3 consecutive

frames, it stops and asks the user to approve or reject the

calibration (Fig. 5). The four crosses are classified as top-

left, top-right, bottom-left and bottom-right (Fig. 4(g)) by

sorting their x coordinate to separate left-crosses from right-

crosses, then the top- and bottom-crosses of each group are

discriminated by comparing their y coordinate.

C. Pen Cap Tip Tracking

To track the pen cap tip, again, instead of using a general

tracking method, we employ a custom one in order to achieve

high precision in this specific scenario, described as follows.

The first estimate for the pen cap tip position is computed

using a blue color filter (Fig. 6(a)): we find the pixel (x, y) that

maximizes 2y+x and satisfies the following constraints: B(x+
i, y+ i) > 60, B(x+ i, y+ i) > 1.6R(x+ i, y+ i) and B(x+
i, y+i) > 1.6G(x+i, y+i) for all i ∈ {−8,−7,−6, ...,−1, 0},
and there must exist a pixel in the line segment between (x, y)
and (x, y + 50) that is found in the convex hull of the four

crosses. The reason for taking i ∈ {−8,−7,−6, ...,−1, 0} and

not simply i = 0 is an attempt to avoid that random points

Fig. 6. Illustration of the overall pen cap tip tracking algorithm: (a) Apply
pen-blue filter and maximize 2y+x; (b) Minimize intensity sum of tilted
column and maximize Sobel within the column); (c) Maximize objective
function f ; (d) Maximize fitted quadratic function from 9 pixels

on the paper pass this blue color filter, while the reason for

considering any point in the line segment linking (x, y) and

(x, y+50) and not only the point (x, y) is that the shadow is

expected to be at most 50 pixels below the pen cap tip (i.e.

we only analyze the regions that make it possible that our

algorithm finds a shadow residing inside the convex hull of

the four crosses). Also, to save computation time, the pen cap

tip is only searched for in one of every 3 lines. We call the

coordinate pair of the estimated position z̃ = (x, y)T .

As the previous estimate is imprecise and often located in a

more inner portion of the cap, our next step is to attempt to pull

this estimate closer to the actual tip (Fig. 6(b)). z̃ is refined to

z̃′ = z̃ + TΔ for T =
[

1 1/2
−1/2 1

]
and Δ ∈ R

2 computed

as follows: First Δ1 is chosen as the tilted column (i.e.

after transformation T ) that locally minimizes the sum of the

intensities in this column, while Δ2 is the row that maximizes

a derivative filter within the column. Precisely speaking, we

compute Δ1 = argmini∈{−6,...,6} c(i− 1) + 2c(i) + c(i+ 1)

where c(i) =
∑10

j=−2 p(z̃ + T
[
i
j

]
), and p(x, y) for non-

integer x or y is computed using bilinear interpolation; then

Δ2 = argmaxj∈{−2,−1,...,10} ∂jp(z̃ + T
[
Δ1
j

]
), where ∂j is

computed using a tilted Sobel filter:

∂jp(r) =p(r + T
[−1

1

]
) + 2p(r + T [ 01 ]) + p(r + T [ 11 ])

−p(r + T
[−1
−1

]
)− 2p(r + T

[
0−1

]
)− p(r + T

[
1−1

]
)

also using bilinear interpolation when necessary. z̃′ is rounded

down in the end. Note that the search window is not symmetric

in j as we know z̃ is unlikely to be located below z̃′.
z̃′ is further refined (Fig. 6(c)) to z̃′′ by maximizing an

objective function of the pixel position. We start from z̃′

and compute this objective function at the point and at its 8

surrounding pixels. The one with maximum value is selected

and the process is repeated until convergence (argument of

maximum at the center). The objective function we chose is

f(r) = e(y+2x)/25 · (L � (∂y(3(R +G)− B))), where L is a

23×23 blur filter in the form (sinc(x/12)sinc(y/12))
2 1 and

∂y is the
[−1

0
1

]
� cross-correlation filter.

The choice for this objective function is quite empirical:

this one worked the best compared to other attempts and

it minimizes the “serif” effect (see Section V-A). The idea

1We use the following definition for the sinc function: sinc(x) =
sin(πx)

πx
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Fig. 7. Let L be the position of the light in homogeneous image coordinates.
Then L, z and s are collinear, and their projection onto the desk following
direction d, respectively l, h and s must also be collinear. Therefore, when
the user moves the pen down, as the hitting point h remains constant, z must
move on the zhd line and s on the shl line, resulting that h = (s×l)×(z×d).

behind this function is as follows. Typically, the y derivative of

the intensity will be highest at the pen cap tip. However, when

the pen touches its shadow, the point of maximum y derivative

is highly dubious, due to the horizontal shape of the shadow.

So, roughly speaking, out of these candidates, we would like

to choose the one with highest x coordinate value. The use of

an exponential function for maximizing the latter is justified

by the behavior of log f , when f is positive: notice that

∇ log f(r) =
[
2/25
1/25

]
+ ∇p̃

p̃ , with p̃ = L� (∂y(3(R+G)−B)),

implying that critical points occur when p̃ falls more than

a certain percentage. The color ponderation was chosen to

prioritize pen-paper rather than shadow-paper transitions and

the squared sinc filter was chosen for its quality as low-pass

filter.

The final estimate z for the pen cap tip position (Fig. 6(d))

is computed by fitting the objective function described above

to a quadratic function (again in the form uTRu) using its

measured value at z̃′′ and the 8 surrounding pixels, and then

maximizing this fitted function. Although technically speaking

this does not interpolate the objective function, the result is

very similar to an interpolation since the function is largely

smooth and can be properly approximated by a quadratic one.

D. Shadow Tracking

As the user cannot look at the paper while drawing, we must

provide a hint of to where the pen is pointing, so that the user

knows where the click is going to be performed beforehand.

In order to achieve this we must be able to predict where the

pen will hit the paper.

Theoretically, if one can track the coordinates of the pen

tip z and shadow tip s, and one knows the clicking direction

d (assuming a linear movement of the user’s hand) and the

position l of the light source projected onto the table following

this direction, the hitting position will be at h = (s × l) ×
(z×d), in homogeneous image coordinates. See Fig. 7 for an

illustration.

One possible technique to calibrate l and d would be to

ask the user to double click on some points on the paper, then

Fig. 8. Diagonal lines as they appear using (a) no interpolation, (b) linear
interpolation of g(y), (c) our method and (d) a graphics tablet. All interfaces
used a resolution of WF × HF = 1920 × 1080 and an input area sized
15cm×9.2cm. (Drawn in Kolourpaint software)

observe the trajectories of z and s and find the vanishing points

where these trajectories cross, yielding d for z and l for s.

However, in order to avoid an extra calibration procedure

and to simplify computation, we simply assume that d =
(0, 1, 0)T and l = (1, 0, 0)T , yielding h = (z1, s2, 1)

T . This

assumption does make some restrictions to the positions of the

webcam and the lamp: the lamp should not be too near to the

paper and the webcam may not be too inclined downwards

(should have pitch and roll approximately zero). However,

this assumption also means that we only need to calculate

the y coordinate of the shadow, as described in the paragraphs

below.

All shadow tracking is performed in a rectangular window

containing the pixels (x, y) ∈ [xmin, xmax] × [ymin, ymax] =
[�z1� − 65, �z1�+ 3]× [�z2� − 10, �z2�+ 49], as the shadow

usually appears under the pen on the left side, i.e. there is no

need to track the shadow at the right of the pen or above it.

The first step is to compute the paper intensity in the region.

We compute the maximum intensity M of the line y = �z2�+
15 in this window and then the mean intensity μ of all pixels

greater than 0.75M in this same line (i.e. the pixels considered

paper in this line). Our threshold between paper and non-paper

is then set to w = 0.75μ. We chose this threshold for the next

steps (and not one depending only on M ) because M is too

unstable and would make our method less precise.

For each line in the window, let g(y) be the number of

pixels in line y with intensity greater than w. Starting from

the bottom of the window upwards we search the first value of

y where g(y) falls to less then a limit ḡ set to 70% of the length

of the window (69 pixels), and call this value s̃2. However,

as we need subpixel precision, we would like to know where

exactly between s̃2 and s̃2 + 1 this transition occurs.

To achieve this we interpolate the function g : Z → Z to

g : R→ Z as follows. p(x, y) for non-integer y and integer x
is obtained interpolating linearly after gamma correction, i.e.,

p(x, y)γ = (1−(y−�y�))p(x, �y�)γ+(y−�y�)p(x, �y+1�)γ ,

for γ = 2.2. Then g(y) for non-integer y is computed with

respect to this interpolated line. To find y ∈ [s̃2, s̃2+1] where

g(y) = ḡ, we first compute for every x where p(x, s̃2) > w
and p(x, s̃2 + 1) ≤ w or vice-versa the value yx satisfying

p(x, yx) = w. These values are sorted in a list, and we set s2
as the first value yx such that g(yx) ≥ ḡ.

This meticulous interpolation procedure with gamma
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correction is very important to make shadow tracking accurate

and minimize the “undulated diagonal” problem. This sort

of problem occurs with more naive approaches to this

interpolation step because the portion of the webcam image

we use has a much lower resolution (particularly in the vertical

axis) than the mouse range window: as the y coordinate (s2)

is biased, if one draws a diagonal line, they may see undesired

undulations in its shape (Fig. 8).

Other approaches such as plain linear interpolation of

g(y) are inappropriate because in fact g(y) is usually not

quite linear between s̃2 and s̃2 + 1. Usually the shadow

appears almost tangent to the horizontal axis in the transition

point, so that a large number of pixels crosses the threshold

approximately at the same value of y, and the transition point

ends up depending largely on the predominant intensity of the

pixels of both lines.

Finally, if we happened to get s2 < z2−3, or if no transition

point s̃2 was found, then we assume that no shadow was

present in the window.

E. Mouse Motion

The position of the mouse cursor within the mouse range

window is computed by applying a rectification (homography)

technique using the four crosses from the calibration process

and mapping the point h = (z1, s2, 1)
T to the window,

yielding a point m ∈ R
2. Mouse coordinates m̃ ∈ Z

2 are

updated from m using a hysteresis technique in order to

increase stability:

m̃t+1
k =

{�mt+1
k + 0.5� , if |mt+1

k − m̃t
k| ≥ 1

m̃t
k , otherwise

where k ∈ {1, 2} denotes the coordinate (x or y) and t and

t+ 1 denotes the frame.

F. Mouse Click

We employ two conditions for mouse click. The most

obvious condition is that the shadow and the pen must be

sufficiently near to each other. For this we use s2 < z2 + 7.

However, as this criterion may fail (i.e., the pen cap may be

mistaken by a shadow in the shadow tracking step), we resort

to an extra condition.

We apply a more lenient version of the color filter used

in pen cap tip tracking — in this case B > 30, B >
1.6R and B > 1.6G — in a 30 × 6 window centered at

(�z1� − 0.5, �z2� − 0.5) to isolate pen cap pixels from paper

and shadow pixels. We compute the mean μ and standard

deviation σ of the non-pen pixels inside this window and use

the coefficient of variation S = σ/μ to discriminate if the pen

and shadow are touching one another. S is expected to be high

(around some value H) when touching and low (around L)

when not touching. However, appropriate values for H and L
depend on conditions such as illumination quality, the position

of the light, the way the user holds the pen, and even the

portion of the paper currently being used. For this reason we

use an adaptive threshold, by learning expected values of H
and L.

We start with H0 = 0.3 and L0 = 0.2. At frame t,
the criterion for touching the paper (apart from the shadow

position one) uses a hysteresis technique imposing that St >
0.4Lt−1 + 0.6Ht−1 if the pen was not touching the paper at

t − 1, and St > 0.9Lt−1 + 0.1Ht−1 otherwise. This helps

avoid unwanted mouse clicks or mouse button releases.

Lt and Ht are updated as follows. If the pen is touching at

frame t, we update Ht = 0.8Ht−1 +0.2St and Lt = Lt−1; if

not, we do the opposite. If the pen cap is currently unavailable

(for instance if it is out of the trackable region), we do instead

Ht = 0.95Ht−1 + 0.05H0 and Lt = 0.95Lt−1 + 0.05L0.

V. RESULTS

We first introduce in Section V-A the main problems we

find by using a common pen to mimic a graphics tablet under

our approach, and then we show in Section V-B how these

problems are perceived in user tests. Finally, in Section V-C

we present a quantitative measurement of the precision of our

tracking algorithms.

A. Limitations

First of all, our system may misbehave (e.g.: perform

undesired clicks, release the mouse button during drag-and-

drop, not accept clicks on a determined region of the paper,

suddenly warp the mouse cursor to another position during

one frame, among other problems) if the setup was not

appropriate (i.e. the configuration on illumination, webcam,

paper, etc.). As we did not employ more generic and robust

techniques to judge “if the detected pen was actually a pen”,

or “if the detected shadow was actually a shadow”, the

setup restrictions may not be so straightforward. For instance,

sunlight may cause interference, non-incandescent desk lamps

do not work well with our system and shadows from strange

objects may also be problematic. If the pen is not correctly

illuminated precision may be lost, and if the paper is not

homogeneously illuminated the adaptive threshold for clicking

may also misbehave. Users may have difficulties in placing the

lamp in an appropriate position, and the way the user holds

the pen also influences the quality of the mouse control.

Apart from this sort of setup limitation, there is one type

of artifact that is inherent to this method of simulating mouse

input, which we call the “serif” effect.

The “serif” effect (Fig. 9) is characterized by a rapid change

of the mouse cursor position when the pen touches the paper.

It is particularly undesirable because when it happens the

captured click will not be at the position the user intended. One

cause of this effect is that pen and shadow merge their colors

when they touch each other, affecting both (pen and shadow)

tracking algorithms. We chose the algorithms attempting to

minimize this cause, however, there is a second cause, over

which we have no control, which is undulated paper. These

undulations may be very subtle, but they will make the pen

and the shadow move downwards when the user clicks, thus

creating this “serif”-like artifact. This effect becomes more

evident if the user sweats by their hands, as the paper becomes

more undulated quickly. It could be reduced if the webcam
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(a) Mild serif effect on a single
stroke. (Drawn in Kolourpaint)

(b) Severe serif effect caused by undulated
paper due to sweating. Red circles are
drawn calling attention to the serifs.
(Drawn in Kolourpaint)

Fig. 9. “Serif” effect examples.

was placed on a higher position, but as our method was not

designed for this scenario, other parts of the method will show

deficiencies. Another alternative is to remove the paper after

calibration and use directly the table (if it is white). A third

cause to the serif effect may reside in the adaptive threshold

algorithm we employ for mouse click conditions, however, this

is an improbable cause because its hysteresis scheme would

make the effect more noticeable in the end of the stroke rather

than in the beginning, which is not the case (as one can see

in Fig. 9).

B. User Tests

We made a survey with 30 voluntary testers asking them to

set up the system and try to use it, provided a setup manual.

Most users (67%) reported having found the system easy

to set up (rating it 1 from 1 to 5), and estimated having

required, on average, 4min15s for the task (the shortest time

reported was 15s, while the longest was 15min) 2. Precision

was evaluated as modest: 47% said the mouse control worked

satisfactorily (rating 1 from 1 to 5), while 30% said that it

misbehaves too often and is difficult to control (rating 3).

Nevertheless, in general, users would accept using our system

replacing the graphics tablet: 20% answered that the graphics

tablet could be replaced perfectly by our system for them,

while 47% said that the graphics tablet is better but too

expensive, preferring thus our system.

Although 63% of the users had very little to no experience

with the graphics tablet, there does not seem to be a correlation

between experience with the graphics tablet and the acceptance

to our system.

The most often reported defects were undesired clicks

and the “serif” effect, reported by, respectively, 47%

and 40% of the users. Those who tried drawings were

particularly disturbed by the “serif” effect, and some were also

uncomfortable with the restrictions on the way of holding the

pen.

We also asked some users to make comparisons between

the graphics tablet and our system, and the result can be seen

in Figures 10 and 11.

Some users that were not used to graphics tablets

reported having found using pen and paper more comfortable

(ergonomically speaking) than the graphics tablet, because the

paper has a submillimetric thickness, being at the same level

2Some users interpreted “time to set up” to be the time spent in the
calibration step, others as the time spent until one can make the system work
correctly.

(a) Drawn by hand (photograph)

(b) Drawn using a graphics
tablet in MyPaint software

(c) Drawn using our system in
MyPaint software

Fig. 10. Comparison for drawing applications. All the three drawings were
drawn by the same user.

of the surface, although this may be due to the graphics tablet

model we used in the tests. Also, some of the problems found

with our method (such as imprecise mouse cursor control

when hovering or changes in the cursor position right before

clicking) are also found with graphics tablets, albeit not as

noticeable or not as disturbing when using the latter.

C. Quantitative Precision Measurement

We have employed a quantitative experiment to measure the

precision of the system.

One user was asked to hold the pen still for some seconds,

hovering or touching the paper, on several positions and

holding poses. During this time, we measured zt1, zt2 and st2,

where z and s are respectively the pen cap tip and shadow

tip positions in webcam image coordinates, and t indicates

the time frame. After measurement, we analyzed the values of

f t − f t−1, for a variable f among z1, z2 and s2.

These values are not a direct measurement of the precision

of our algorithm because they are affected by intentional

movement of the pen, which happened in this experiment when

the user changed the position of the pen or the holding pose.

Attempting to eliminate the measurements where the user is

intentionally moving the pen, we opted to discard all the values
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Fig. 11. Comparison of our system with graphics tablet and optical mouse. We used a range window of 640 × 480 in our system and crosses forming a
15cm×12cm rectangle (approximately), while the tablet used a resolution of 1280× 1024 and has an input area sized 15cm×9.2cm. The difference in time
between the graphics tablet and our system is mainly because this sentence does not fit in the range window of our system (640 × 480), requiring it to be
moved to the side at least once while writing the sentence. All the three cases were drawn in Kolourpaint, by the same user.

where |f t − f t−1| ≥ 0.5. Out of the 2146 frames measured,

the discarded values correspond to:

• 12.0224% of the measurements of z1;

• 9.8322% of the measurements of z2;

• 2.0969% of the measurements of s2.

Using the remaining values, we estimated an error in the

form σf =
√

1
2E[(f t − f t−1)2] 3 yielding:

• σz1 = 0.116029 pixels;

• σz2 = 0.102873 pixels;

• σs2 = 0.094950 pixels.

These values may vary, however, depending on the webcam,

the lighting conditions, the person who is holding the pen,

the distance to the webcam, and other factors. They prove,

however, that our algorithms reach subpixel precision on image

coordinates if the ambient is properly configured. Nonetheless,

after these coordinates are mapped to mouse range window

coordinates, this error measure becomes much larger, specially

for the y coordinate, i.e., the error measure in m2 (the mouse

pointer y coordinate before truncation) is much larger than the

one in s2, due to the positioning of the webcam.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a low-cost, practical and easy-to-set-

up system to generate mouse input using paper, pen and

webcam, aimed at handwriting and drawing applications, for

situations where the computer mouse would not be precise,

fast or comfortable enough and a graphics tablet would be

unaffordable. If the system is properly configured, it is precise

enough for handwriting and simple drawings, successfully

complementing the mouse. However, user tests proved our

system to be still unusable for more artistic applications,

particularly due to the “serif” effect.

Apart from correcting the limitations mentioned in

Section V-A, we would also like to keep precision high in

different configurations of illumination, paper, pen, webcam

position, etc.. Particularly, flexibility in the range of pens and

light sources that can be used is desired. We would also

3The reason for the 1
2

factor is that E[(X1 −X2)2] = 2Var(X) for two
identical and independently distributed random variables X1 and X2.

like to achieve pixel precision (after rectification) in a higher

resolution, and to investigate ways to eliminate the “serif”

effect completely.

An extension of this work would be to obtain the 3D

position of the pen tip, which can be easily done by using

the shadow as reference and making a few assumptions, and

use it in applications such as 3D modeling.
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