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Fig. 1. Example of a transformation into a multi-component target

Abstract—Target driven smoke morphings are processes, based
on the simulation of smoke dynamics, which are so flexible that
we are induced to believe that they can produce a continuous
transformation of any 2D object into any other. Here they are
considered with respect to the ability of reproducing targets of
more complex geometry or topology, assuming that the process
starts at a generic 2D object. Alternatives for several limitations
are proposed to make it possible to cope with fine dents, cavities
or holes and to obtain the same brightness in all components
of a non-connected target object. The original approach uses
a diffusion process to define a field that pulls smoke towards
the target. Here that field is replaced by one, depending on a
distance transform, which is computationally simpler and helps
to deal with peculiarities of the objects. The finalization of the
morphing process is also focused with the objective of eliminating
oscillations and flickering.

Keywords-Morphing, Navier-Stokes equation, Smoke models,
Distance Tranform

I. INTRODUCTION

Methods for obtaining visually convincing fluid dynamics

simulations have been an important topic of Computer Graph-

ics research for at least the last two decades. The increase in

hardware capabilities has allowed the treatment of configura-

tions of growing complexity, and thus have maintained a high

level of interest in the area. Moreover, fluid diffusion models

have been used for implementing tasks beyond the context of

simulation. A remarkable example of this is morphing, which

contradicts physical laws. Among the morphing approaches

based on fluid dynamics, those not steered by keyframes have

scarce examples in the literature and, in consequence, their

application to the morphing between two planar shapes still

have aspects not entirely understood. This article focuses some

of these aspects, giving them specialized treatments so as to

produce visually acceptable transformations which are more

correct in the sense of fully reaching the target set geometry.

We aim to show that by adequately treating topologycal and

geometrical aspects of the target and also the way smoke

density is distributed and rendered, a reasonable result can be

obtained in a totally automatic way, that is, without manually

stipulating keyframes or matched pairs.

Smoke presents highly variable densities, transparency and

shape. For that reason, it is a natural medium for forming

the objects being morphed. Standard schemes for obtaining

a morphing employ some kind of warping, followed by a

blending procedure which merges characteristics of both the

input and target objects. The smoke morphings focused here do

not follow that model. There is no warping, and the blending

of features is restricted to displaying part of the target while

portions of the input object are still recognizable. They have an

evolution paradigm ideally consisting of the gradual dilution

of the input, the creation of a smoke cloud that hides the

rearrangement of structures and the materialization of the

target when smoke is totally dissipated.

Some previous works on the theme are mainly interested in

showing the ability of physically modeling the transformation.

In this article, the questions considered are related to different

issues of the process. In fact, its main contributions are relative

to problems of other kind like reproducing the geometrical and

topological features of the target at the end of the morphing,

generating a final density distribution having the same value

at every target component and avoiding noticeable oscillations

in the convergence process to the target.

We start by overviewing related works in the next section.

Section III is dedicated to the generic formulation of smoke
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morphing as established in [1]. In section IV we discuss

several aspects of a smoke morphing process which demands

specific treatment. Implementation and demonstrative exam-

ples are the scope of section V. Conclusion and future work

constitute section VI.

II. RELATED WORK

Several works in the literature have already addressed

diffusion based morphing or similar topics, using a variety

of methodologies. The first ones to present a method for

the generation of shapes through a controlled simulation of

smoke were Treuille and McNamara [2]. The smoke control

was done through a series of keyframe images defined by

the application user. An objective function measuring how

well states of simulation match keyframes is optimized to

adequately determine control variables affecting forces and

velocities. This scheme was revisited in [3] and more recently

in [4] and [5].

The work by Treuille and McNamara is based, like many

others involving fluid simulation, on the results obtained by

Foster and Metaxas [6], Stam, in his Stable Fluids publication

[7], and Fedkiw, in a subsequent work [8]. Stam presents an

unconditionally stable method for fluid simulation, adopting a

semi-Lagrangian approach for the advection component in the

system.

Fattal and Lischinski present an alternative proposal for the

morphing of shapes using physical animation of fluids [1].

Differently from the previous approach, the authors do not use

any intermediate keyframe to steer the simulation. Only the

initial and final shapes are given. The transformation process

is carried out through the application of a driving force to the

fluid, which directs it to the target. It should be noted that the

approach only concerns itself with whether or not the final

stage has been reached, but not in the aspect of the smoke

in the middle stages of the morphing. Even such a flexible

scheme has difficulties for opening holes or excavate cavities

Obtaining uniform brightness in a multi-componnent target

can also be a problem. An implementation based in this work

with results is described in [9].

Other morphing approaches can be found in the literature,

some of them using diffusion processes, while others eschew

fluid based techniques. Liu et al. use a model consisting of

ellipsoidal structures (blobs) to approximate 3D meshes ( [10]

and [11]). Their technique morphs objects by changing their

blob approximations through the conjugated application of two

operations affecting clouds, which are, essentialy, sets of blobs.

One is a diffusion scheme affecting each cloud individually,

the other is an aggregating phase which merges several clouds

into a more complex one.

Zhao [12] uses a scheme typically employed in fluid dy-

namics, known as Lattice Boltzmann, or LBM for short. He

introduces a modified version of the LBM algorithm where

distance fields relative to surfaces influence the evolution

process. More specifically, the difference between the distance

field of the target surface and that of the transformed surface is

used to define the expansion speed of the morphing process.

This speed is included in the LBM diffusion scheme as an

external force.

Schechtman et al. introduce yet another approach for image

morphing [13]. He uses an optimization algorithm where the

objective function is a bidirectional similarity measure. The

idea is to find a smooth transition between the intermediate

stages of the morphing while, at the same time, making sure

that the regions of an in-between image is, in some way,

similar either to the original or to the target image.

This work is based on the approach adopted by Fattal and

Lischinski [1] for the morphing of images using a smoke diffu-

sion process. However, instead of using a Gaussian function,

the fluid driving force is associated with a special distance

function to the target. The definition of that function and

the way the driving force is obtained from it is chosen so

that density concentration and convergence oscillations are

avoided. The gathering term used in the work by [1] was also

replaced by a series of mechanisms designed to work around

the issues found during the implementation of the method. By

using this approach, we can achieve good results in several

cases in where the original algorithm fails. Such cases include

the generation of objects with holes and narrow cavities, or

those with more than one connected component.

III. ORIGINAL PROBLEM FORMULATION

Following the formulation used in [1], let ρ(x, t) be a

scalar field representing the density of the smoke at a given

point x of a grid at time t. For simplicity, we write ρ to refer

to the current state of that field during the morphing process,

while ρ0 and ρ∗ denote the fields given by the characteristic

functions of the source and target sets, respectively. The

morphing will be interpreted as a process transforming

field ρ0 into ρ∗. Thus, ρ varies according to the standard

Navier-Stokes system for Newtonian fluids with variable

densities 1, expressed by the equations below:

∂V

∂t
= −V · ∇V − ∇P

ρ
+ σ∇2V + gtarg + gdamp (1)

∂ρ

∂t
= −V · ∇ρ + σρ∇2ρ + hdamp (2)

Expression 1 updates velocity(V ). The terms on its right

side refer to the velocity advection, pressure(P ) action under

uncompressibility conditions or not, a viscosity influence

weighted by σ, the acceleration (gtarg) determined by a

force that pulls toward the target and a last term (gdamp)

introduced to eliminate residual velocities at the end of the

process producing a static solution. Equation 2 expresses how

density is regulated by the action of advection, viscosity and

a damping term. In our implementation we have used Stam’s

formulation [7] that uses cell velocities instead of staggered

grids. The crucial point is the definition of the force which

induces gTarget. In [1], that force is obtained from a Gaussian

1A detailed introduction to Navier-Stokes equations can be found in [14]
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diffusion process applied to both current and target objects.

Explicitly, it is expressed by equation 3

F(ρ, ρ∗) = ρ̃
∇ρ̃∗

ρ̃∗
, (3)

where ρ̃ and ρ̃∗ are fields obtained by convolving ρ and ρ∗

with a Gaussian kernel.
This formulation focuses specially the fact that once the

current object has converged to the target, then the Navier-

Stokes’ regulating process must be able to bring all the

velocities to zero. Finalization problems are thus avoided. This

is provided in the following way: when ρ = ρ∗, then the target

driving field becomes F(ρ∗, ρ∗) = ∇ρ̃∗, which is the gradient

of a potential field. Thus, it can be compensated by a pressure

field equal to ρ̃. Velocities, then, only change by advection

and are continuously reduced by a damping force until they

reach zero.
Considering a circular target, for instance, it is clear that

the acceleration determined by 3 increases with the distance

to it. For non-convex targets, however, this may not hold. The

formulation above requires a new diffusion process at each

iteration, to find ρ̃, which must use the same parameters as

the one employed to generate ρ̃∗. Otherwise the two fields

will not be equal at the final state.
The process used for ρ̃∗, however, cannot lower the target

densities too much to avoid eliminating fine geometrical

features. This not only makes it unappropriate to convolve

the image with a Gaussian kernel repeated times, but also

requires the Gaussian variance to be small. Moreover, the

result of a low variance Gaussian filter applied to the whole

image far from the target, will be a sum of extremely small

numbers. Thus, robust numerical methods and high precision

are necessary, considering that the initial object can be, in

principle, at any distance from the target.

IV. PROPOSED APPROACH

A. Redefining the driving force
To avoid the computational peculiarities mentioned above

and to get a more suitable approach to deal with complex

shapes, we propose a driving force based on a distance

transform rather than on a Gaussian diffusion. Let us define T
as the signed distance function with respect to the boundary

of the set of points τ = {x|ρ∗(x) = 1}. Note that T is

differentiable everywhere except on MA(τ), the medial axis

of τ . Disconsidering for now the points in MA(τ), we propose

the following expression for the driving force component:

H =
ρ

ρ̃∗
[ρ̃∗T̃ + (1− ρ̃∗)((1− α)(1− T̃ ) + αT̃ )]∇T, (4)

where ρ̃∗ is a nowhere null continuous approximation of ρ∗,
such that ρ̃∗ = 1 in (τ), T̃ is a normalized version of T so

that the maximum value of |T | is 1, and α is a measure in

[0, 1] of how far the current iteration is from the final desired

state. In our implementation it is given by

α �
∑

p∈I (ρ̃∗(p)(ρ̃(p))
target area

.

First of all, notice that for a point in the target, H → T̃∇T
when the morphing gets closer to the final state where ρ = ρ∗.
At the same time, H → 0 outside the target. Putting the two

cases together, we obtain that H → ∇(G), i.e., where G is

the scalar field

G � T̃ min(T, 0)
2

.

Thus, a pressure field equal to G can compensate H .

Far from τ , ρ̃∗ � 0 and H decreases with T at the beginning

of the morphing process, when α is small, and increases with

T at the end, when α � 1. This causes a stretching of the

source towards the target at the start and aggregates small

amounts of smoke dispersed on the whole image while they are

pulled towards the target at the end of the process. To make the

acceleration determined by H be a bounded function, we must

limit the ratio between max((1− T̃ ), T̃ ) and ρ∗. This can be

ensured, for instance, by making ρ∗ = 1− T̃
2 . Observe that at

any given iteration, we simply update α, current densities and

velocities. In particular, there is with no need for computing

costly Gaussian filters.

However, a morphing process driven by distance measures

has the drawback that, during the whole transformation, only

the portion of the target which is closest to the object being

morphed influences the way it changes. This issue is tackled

in two different ways. The first consists in adding to the

field force a component proportional to the distance vector

between the geometrical centers of the current morphing

instance and of the target. The translation determined by this

vector anticipates the moment the morphing object reaches

the target, thus reducing the possibility that an object being

morphed is influenced solely by the points of the target closest

to it. Secondly, the concentration of density around the convex

vertices of the border must be handled with care, since these

attract a much larger number points than those in a smooth

portion of the boundary. To distribute the smoke density along

the target border, when the morphing process reaches it, we

need to redefine the distance transform. Consider a discretized

version of the problem, where the image domain is represented

by a rectangular grid of cells, each one with a label obtained

according to following procedure:

1) Label a cell with 0 if it lies on the target border, or with

∞ otherwise.

2) For all cells C such that label(C) = ∞, relabel them

with minC′∈N(C)(label(C ′) + 1), where N(C) stands

for the 8-connected neighborhood of C.

3) Repeat (2) until all cells have finite labels.

4) Define Xi as the set of cells with label i.

Once this is done, associate each C ∈ Xi with one of its

neighbors in Xi−1. The graph thus defined is a forest with

roots in X0. Different associations imply different forests, and

to construct one where the pixels are well distributed among

its trees, procedure Redistribution given below must be applied

for every Xi, starting with X0. Figure 2 shows an example of

this process for a square object.
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Procedure Redistribution:

1) Traverse Xi, adding to Xi+1 every neighbor of a cell

in Xi still unassociated and removing from Xi all

cells with no unassociated neighbors. At the end of

that process, if Xi+1 is empty, stop. Otherwise, the

remaining cells of Xi will form a set of mutually disjoint

closed chains. For each chain S of Xi, let LS be the list

of cells C ∈ S ordered by the value of D(C), where

D(C) is defined as the number of cells in the tree which

contains C.

2) For each cell C of Xi+1 having a single neighbor C ′ in

Xi, associate C ′ to C.

3) Make associations for aligned groups of 3 cells. This is

done using a priority queue organized by D(C). Each

cell C of a chain S of Xi is tested as to whether it is

aligned (i.e., has same row or column) with its parent

C∗ in Xi−1 and an unassociated neighbor C ′. In this

case, an association between C and C ′ is created and

D(C) is updated in the priority queue.

4) Make associations for aligned groups of 2 cells. This

is done in a similar manner to step 3, except that the

parent C∗ is not taken into account.

5) Finally, repeat the process for remaining cells still hav-

ing an unassociated neighbor in Xi+1.

Fig. 2. The modified Distance Transform of the square in red. Each cell is
labeled with a number identifying the root of the tree it belongs to.

Notice that the algorithm forces a preference for aligned

sequences of parent, child and grandchild cells so as to reduce

the chance of having jagged tree paths. The preference for

aligned groups of two cells avoid branches intersecting each

other.
Finally, this discrete formulation entails that ∇T at a cell

C belonging to a tree rooted at a cell C0 is defined as the unit

vector of
−−→
CC0. T is replaced by the norm of

−−→
CC0.

B. Average density evolution
Both source and target consist ot sets of cells having density

1 and, as densities are simply advected, the total ammount of

smoke will remain constant during the transformation, except

for the portions that eventually leave the image. These two

facts imply that, in spite of the system’s ability to transport

densities to the target, a transformation between objects of

different sizes cannot be totally completed.
We tackled this problem by estimating, for each simulation

step t, an intended total density D∗(t) = β(t)D1 + (1 −

β(t))D0, where D0 and D1 are the sum of all densities

at the initial and final configurations, respectively. Then, an

uniform correction factor is applied to all the grid cells, forcing

D(t), the total density computed at step t to become D∗(t).
Eventually, some cells - n, say - might get densities greater

than one. This is corrected by distributing the surplus densities

among the other cells. In our experiments, this process has not

introduced noticeable artifacts or degraded the morphing in our

experiments.

The linear interpolation weight β(t) must express the prox-

imity between the configuration at t and the target. Let R(t) be

the ratio between the sum of the densities inside the target and

the total density, both evaluated at step t. As a first attempt,

we may define

β1(t) =
max(R(t)−R(0), 0)

1−R(0)
,

which is a number in [0, 1]. This expression reduces to R(t) if

target and source are disjoint. With this formulation, however,

β1(t) is kept null until the target is reached. To correct this,

let δ0(t) refer to the distance between the geometrical centers

of the instance at t and that of the source object. Define δ1(t)
similarly with respect to the target object. Thus, the actual

factor used in our implementation is given by

β(t) = kβ1(t) + (1− k)
δ0(t)

δ0(t) + δ1(t)
,

for some k ∈ [0, 1].

C. Targets with more than one connected component

Within the target, the driving force makes the smoke oscilate

from one side to the other before velocity gradually decreases

in value until the morphing reaches the final state. In conse-

quence, density propagation to unexplored parts of the target

can be predominantly determined by the action of viscosity,

which is implemented by a Laplacian operator. That operator

performs the uniformization necessary to equalize density

distribution inside the target. That uniformization, however,

is a slow process, which led us to apply it consecutively n
times during a single iteration. A good choice for n is case

dependent. It must be large enough to sufficiently speed up

the uniformization process to avoid discontinuities in density

evolution rhythm when the predominant factor for it changes

from advection to viscosity. On the other hand, it cannot be

too high to cause noticeable jumps between successive frames.

When dealing with connected targets, the Laplacian operator

works quite well. However, if shapes have more than one

connected component, a new problem arises. In most cases,

density converges to a different value for each component,

meaning that, for some, that limit is less than 1. To compensate

for that, other components would exhibit densities greater than

1. The average density correction discussed in the previous

section avoids this behaviour, but convergence suffers, since

densities are redistributed outside the target.

To fix this problem, it is necessary to take energy from one

component to another, which implies in moving densities from
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a target component to the surrounding background region. The

system of forces in use, however, hinders that.

A solution then consists in replacing the Laplacian opera-

tor, which in essence computes an average of neighbor cell

densities, by an operator – called MaxViz – which takes the

maximum value, when processing cells inside the target area.

This worked well in all of our tests, where the advection

process took sufficiently large density values from the initial

object to any target component. When that happens, the

MaxViz operator propagates densities to all of the extension

of the component.Simultaneously, average density treatment

will increase their values. Figure 1 shows an example of a

successful morphing with a target with multiple components.

One might imagine, however, situations where some iso-

lated component will attain a very small overall density. In

such cases, MaxViz might be combined with some forward

advection scheme, making it possible for cells to accumulate

density. This is a good example where the physical model must

be relaxed to fill the requirements of a good morphing.

Fig. 3. Advection scheme for pulling low densities towards dents and cavities

D. Density versus brightness

As the density value is the only information relative to

the ammount of smoke at a cell, it is natural to think of

rendering it by using brightness as a linear function of its

density. During the course of thesimulation, however, many

cells may assume density values which are insufficient to

make them visible. Using a function of higher slope to

overcome this problem would saturate the representation of

cells with medium densities, thus ruining the visual aspect of

the transformation.

Detaching density from brightness, not only allows to ad-

dress the difficulty above, but may also produce desired visual

effects. For example, we could present the target shrouded in

a mist, or show the transforming object as if it were more

transparent than it really is. In order to achieve these effects

and provide correction for cases in which important cells

may not be visible, we used a non-linear function to amplify

the brightness for densities below some threshold d0. In our

experiments, the brightness of B(d) of a cell with density d
is set to

B(d) =

{
cd + λ(d0 − d)2

[
1− (d0−d)2

d2
0

]
, if d < d0

cd, if d ≥ d0

(5)

where λ is chosen to ensure that B is an increasing function.

Fig. 4. Difficulties with smoke transportation may cause insufficient density
in some connected components and holes which are full of smoke

E. Dents and holes

One of the drawbacks of diffusion processes is that they

eliminate high frequencies, making it difficult to produce, for

instance, a narrow dent in the target contour. Besides, it is not

easy to open a hole in the target after it has been totally filled

with smoke. If we entrust this task to the advection step of

the simulation, we will not be able to obtain any good results,

because the cells in the hole will swap densities with cells on

the other side of its medial axis without ever reducing the total

amount of smoke inside it.

That exchange of densities may be reduced by using a multi-

stage advection method such as, for instance, those proposed

by Lax-Wendrof and McCormack [15]. In fact, it is sufficient

to modify the standard semi-Lagrangean advection scheme so

that it updates the density ρ(x) at a point x with the value of

min{ρ(x− V (x) + V (y)
2

Δt), ρ(x +
V (x) + V (y)

2
Δt)} (6)

where y = x − V (x) ×Δt. That change must be made only

for x /∈ τ and when the angle between V (x) and V (y)
is ≥ a, for some angle a ∈ (π

2 , π). That new formulation

enlarges the velocity component parallel to MA(τ) favoring

the displacement of smoke inside the dent. The min operator

aims to ensure that null densities in the already excavated

part migrate to the portion of the dent still filled with smoke

by distinguishing between dents and cavities having openings

narrower than their interiors (see Figure 3).

After a certain time, the field force will lower all the

densities out of the target’s convex hull. This is sufficient

to trigger the excavation process of structures such as dents,

which are connected to the exterior (see Figure 5 for an

example). This, unfortunately, is not the case of a hole. If

it is full of smoke, the advection will not be able to find

low densities nearby to clear it. In Figure 4, for instance,

the hole in the “yin-yang” symbol will remain filled. Thus,

to start the opening process we must force the clearance

of some cell within the hole. Since any hole has at least

one local maximum of the distance transform of the target

(DT (τ)), some such cells are selected to start an excavation
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TABLE I
DENSITY DISPERSION

Example Cell Average Density
Psi-omega 0.2528
Omega-psi 0.2157
Yin-yang 0.6173

2012-Sibgrapi 0.3715

process. Rather than explicitly identifying holes, if the rhythm

of density evolution becomes too slow, we simply set the

density of the k highest local maxima of DT (τ) to zero. If

this is not sufficient to start an opening process that recovers

the evolution rhythm, replace every local maximum already

selected by its unselected neighbor of highest DT (τ) and

repeat the process. We use the variation of R(t) defined in

IV-B during a few iterations to evaluate the morphing rhythm.

Figure 7 shows an example of this hole opening process.

F. Flickering elimination and antialiasing procedures

Even after the smoke distribution has visually converged

to the target model, a flickering effect may occur, usually

constrained to a neighborhood of the target border, and too

narrow to give the target a steamy appearance which is more

desireable. The flickering is just the result of large velocity

values that keep trying to move very small densities towards

the target. This effect may induce the observer to think that

the morphing process is not yet finished.

Although antialiasing procedures can reduce flickering in-

tensity, to produce a stable final picture, we adopt the simple

solution of gradually reducing the time step while the simula-

tion gets closer the final state. Near the end of the process

δt becomes very small, producing no visually noticeable

oscillations. Before that, however, the time interval need not

be reduced, suggesting a decay at least quadratic. We regulated

the time step by

Δt∗ = Δt(1− β(t)2) + εβ(t)2,

where β(t) was defined in Section IV-B, ε is a small number

and Δt is the non-adjusted time step.

To give a steamy aspect to the target, the small densities

around the target are propagated nearby and represented

through a scheme that enhances the brightness of low densities.

Table I shows the average density of the cells where it is

not null at an instance visually equivalent to the target image

in four different examples. If all these cells were in the

target these densities would be close to 1. As they are much

lower,this indicate that there is activity in a large number of

cells outside the target. Stopping that activity by means of a

damping force may take some time, justifying the finalization

approach used here.

At the beginning and at the end of the transformation

process, when constrast is sharper and the object seems to

remain still, aliasing is much more noticeable. Non-smooth

shapes and low resolution grids aggravate this propblem.

During the transformation, however, the mist cloud that usually

surrounds the object attenuates this effect. We have treated

aliasing by applying 4 × 4 versions of Catmull’s [16] and

Lanczos’s [17] filters. This last one is well known by its

effective aliasing reduction, while maintaining the contrast and

collaborating with the removal of oscillations. It is, however,

more costly, and in the tested simulations we have restricted

its application to a narrow band around the object borders

V. RESULTS

A program integrating the proposed morphing approach and

a visualizer has been implemented using the C++ language

and the OpenGL graphics library. Experiments were run on a

computer with an Intel i3 processor running at 2.1GHz, 4 Gb

memory and an nVidia GeForce 540M graphics adapter. The

program equalizes the resolution used to represent the objects

to be morphed and puts them, after adequately scaled, at

places specified by the user. The transformation is produced at

frame rates which are essentially proportional to the grid sizes,

although the complexity of the field force and the variable time

cost of the Poisson solver may also influence the overall speed.

In particular, simulations on a 64 × 64 grid run at roughly

60 fps, while simulations on a 256 × 256 grid run at close

to 6 fps. The duration of the morphing process also depends

on many other factors which certainly include the position of

the objects, their geometrical difference and topologies. The

simulation complexity also depends on parameters such as the

number of times the Laplacian operator is applied within the

target at each iteration.

The system does not need a strict termination rule. Rather,

the time step is successively lowered when most of the density

reaches the target object. The chart in Figure 6 shows a typical

evolution of the transformation when object and target are

disjoint sets, namely, the morphing between two greek letters

shown in Figure 8. We remark that from the 80th iteration on,

the result is visually equivalent to the final state, though the

chart still indicates a small difference.

Fig. 6. Portion of the target reached × number of iterations

The figures below show four examples of morphings pro-

duced by the method introduced here. In all these examples

resolution is 256× 256, time step is 0.2 and the driving force

weight is 1. Figure 8 is the transformation of greek letter psi

into letter omega, presented here for comparison purposes,

since this is also shown in Fattal’s original paper. Figure 9 is

a simple example where both objects have holes and multiple
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Fig. 5. Example of the excavation of target with dents

Fig. 7. Example of the opening of holes in a target

components. Figure 10 shows an object with thin features

and dents morphing into a target with holes. Finally, Figure

11 presents a sequence of consecutive morphings involving

different objects, similar to those used in the works of Fattal

[1] and Fedkiw [8].

VI. LIMITATIONS

The methodology described herein is, in essence, a fluid

simulation performed in an Eulerian environment. Thus, it

inherits all limitations of such methods. These are related to

the discretization process and to the fact that velocity and

density variation are not computed simultaneously. Compared

with other approaches, target driven smoke morphing does not

allow for direct control over correspondences between parts

of the two objects. The most usual form of blending process

is the simultaneous exibition of features of both objects. An

extension for transforming objects with color is far from

straightforward, due to the difficulty to keep parts of different

colors separated. In relation to the original approach, we have

replaced an atractor field which is differentiable everywhere

by one with no gradient at MA(τ). So, a pressure field cannot

adequately compensate the atractor effect at the points on that

set. That compensation was used to accelerate the convergence

to the final state. However, since MA(τ) has no interior,

losing that property along it does not affect the duration of

the morphing process as shown in Table I.

VII. CONCLUSIONS AND FUTURE WORK

In this article, target-driven smoke morphings are analyzed

with respect to their geometrical and topological correction,

and to their visual aspect. Section IV discusses techniques

for the treatment of several issues which are neglected by

other works, namely, the handling of multiple connected

components, dents and holes. Also, by changing the field force

to one based on the special distance transform introduced

in Section IV-A, we enhance the computational performance

without degrading the morphing quality.

The continuation of this work will evolve in a few pre-

dictable directions. In the context of smoke modeling, the

next step is to introduce temperature and soot to help to

control brightness and transparency during the morphing.

The extension to 3D objects is a natural upgrade. The main

challenge is to maintain quasi-real time performance, which

must be achieved by means of parallelization. Incidentally,

writing GPU versions of almost all procedures implementing

the ideas proposed here seems quite straightforward. Applying

the scheme to colored objects is another challenge. Possible

trends to be followed in that direction include partitioning the

objects in regions of similar color, pre-compute source-target

cells correspondence, possibly with the user’s intervention, and

the use of multi-phase fluid approaches to try to avoid the

merging of different color regions.
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