HAPT: Hardware-Assisted Projected Tetrahedra

Eurographics/IEEE Symposium on Visualization, June 9 - 11

EuroVis 2010

André Maximo

June, 2010 Bordeaux, France

main applications

Industry

Fluid Simulations

Geosciences

Mechanical Engineering

Medicine

Weather Forecasting

...

motivation background hapt

results

main applications

motivation background hapt results

Industry

Fluid Simulations

Geosciences

Mechanical Engineering

Medicine

Weather Forecasting

. . .

Indirect Volume Rendering iso-surfaces

main applications

motivation background hapt

results

Industry

Fluid Simulations

Geosciences

Mechanical Engineering

Medicine

Weather Forecasting

_ _ _

Indirect Volume Rendering iso-surfaces

Direct Volume Rendering semi-transparent material

main applications

motivation background hapt results

Industry

Fluid Simulations

Geosciences

Mechanical Engineering

Medicine

Weather Forecasting

. . .

Indirect Volume Rendering iso-surfaces

Both

our method

What We Want

motivation background hapt results

Simple and straightforward

High performance

Low memory consumption

Direct and Indirect rendering

Time-varying datasets

Implementation flexibility

Volume Rendering

our method

What We Want

motivation background hapt results

Simple and straightforward

High performance

Low memory consumption

Direct and Indirect rendering

Time-varying datasets

Implementation flexibility

Cell Projection

 \times

Ray Casting

our method

What We Want

motivation background hapt results

Simple and straightforward ◀

High performance

Low memory consumption

Direct and Indirect rendering

Time-varying datasets

Implementation flexibility

Cell Projection

 \times

Ray Casting

our method

What We Want

motivation background hapt results

Simple and straightforward

High performance

Low memory consumption

Direct and Indirect rendering

Time-varying datasets

Implementation flexibility

Sequence of Static Volumes

our method What We Want Simple and straightforward Sorting High performance Stream Low memory consumption Control Direct and Indirect rendering Time-varying datasets Rendering Implementation flexibility Integration

base method

PT algorithm [Shirley and Tuchman, 1990]

motivation background hapt results

Tetrahedron

base method

PT algorithm [Shirley and Tuchman, 1990]

base method

PT algorithm [Shirley and Tuchman, 1990]

the method

Hardware-Assisted Projected Tetrahedra

the method

Hardware-Assisted Projected Tetrahedra

tetrahedra points
$$GPU$$
 triangles

 $VS = GS = \mathbb{Z}$

the method

Hardware-Assisted Projected Tetrahedra

tetrahedra points
$$GPU$$
 triangles

 $VS = GS = FS = FS$

the method

Hardware-Assisted Projected Tetrahedra

tetrahedra points
$$GPU$$
 triangles pixels

 $VS = GS = FS = FS = FS$

the method

Hardware-Assisted Projected Tetrahedra

tetrahedra points
$$GPU$$
 triangles pixels

 $VS = GS = FS = FS = FS$

framework

Hardware-Assisted Projected Tetrahedra

framework

Hardware-Assisted Projected Tetrahedra

motivation background hapt results

Sorting

framework

Hardware-Assisted Projected Tetrahedra

framework

Hardware-Assisted Projected Tetrahedra

motivation background hapt results

Stream Control

GPU memory consumption

framework

Hardware-Assisted Projected Tetrahedra

framework

Hardware-Assisted Projected Tetrahedra

motivation background hapt results

STL Sort

... MPVONC

framework

Hardware-Assisted Projected Tetrahedra

motivation background hapt results

e.g.
Partial
PreIntegration

framework

Hardware-Assisted Projected Tetrahedra

motivation background hapt results

Lighting

Integration

Pre-Integration

timings

	Size		Dir. Vol. Rend.		Iso-surface Rend.		DVR + ISO	
Datasets	# Verts	# Tet	FPS	M Tet/s	FPS	M Tet/s	FPS	M Tet/s
blunt	40 K	187 K	19.2	3.59	25.5	4.78	7.7	1.44
post	110 K	513 K	8.1	4.15	11.9	6.10	3.0	1.51
spx2	150 K	828 K	7.4	6.11	8.2	6.76	1.9	1.57
delta	211 K	1 M	4.5	4.52	6.0	6.01	1.5	1.51
torso	168 K	1.08 M	5.6	6.08	7.2	7.78	1.7	1.82
fighter	256 K	1.40 M	4.2	5.83	5.0	7.06	1.1	1.60
turbjet	212 K	1.01 M	17.5	17.67	n/a	n/a	n/a	n/a

sorting

motivation background hapt results

centroid

 \times

MPVONC

Dataset	Max. Error	Avg. Error	Diff. Pixels
blunt	1.961%	0.4069%	6.04%
post	2.353%	0.4245%	33.13%
spx2	1.569%	0.3985%	8.13%
delta	5.098%	0.5895%	14.25%
torso	1.176%	0.3933%	1.51%
fighter	1.569%	0.3943%	2.02%

1/3 of the pixels

0.4% ~ 1 unit [0, 255]

•••

comparison

spx2 828 K Tet

Algorithm Sort *FPS* M Tet/s Draw $\mathsf{HAPT}^{\mathcal{Q}}$ 0.09 0.03 7.4 6.11 $HAPT^{B}$ 0.04 0.09 6.9 5.73 $HAPT^{S}$ 0.08 0.09 5.4 4.50 $HAPT^{M}$ 0.13 0.09 3.61 4.4 $HAVS^2$ 4.14 0.09 0.11 5.0 HAVS⁶ 0.09 0.12 4.7 3.94 **PTINT** 0.19 0.20 2.06 2.4 **GATOR** 0.08 0.83 0.93 1.1 3.82 $HARC^n$ 0.22 4.6 n/a $HARC^p$ 0.28 3.5 2.90 n/a

comparison

	t	orso	fighter		
Algorithm	1,08	2 K Tet	1,403 K Tet		
	FPS	M Tet/s	FPS	M Tet/s	
$HAPT^Q$	5.6	6.08	4.2	5.83	
$ HAPT^B $	4.3	4.68	3.6	5.09	
\mid HAPT ^S	3.9	4.25	2.9	4.10	
$HAPT^{M}$	1.6	1.73	1.2	1.62	
HAVS ²	3.7	4.01	2.9	4.12	
HAVS ⁶	3.3	3.60	2.7	3.89	
PTINT	1.3	1.47	0.9	1.31	
GATOR	0.7	0.76	0.4	0.56	
$HARC^n$	4.8	5.19	3.8	5.33	
$HARC^p$	3.9	4.22	3.0	4.21	

renderings

motivation background hapt results

blunt fin 187 K Tet 19.2 fps

oxygen post 513 K Tet 8.1 fps

renderings

motivation background hapt results

turbulent jet
1 M Tet per frame
150 frames
17.5 fps

video

HAPT

Hardware-Assisted Projected Tetrahedra

hapt

results

background

conclusions

pros and cons

Greater flexibility

Fast rendering

Flat shading

Centroid sorting

Low GPU memory consumption

Direct and Indirect rendering

Render time-varying datasets

reproducible research

http://code.google.com/p/hapt

thank you

andmax@cos.ufrj.br

http://code.google.com/p/hapt

Hardware-Assisted Projected Tetrahedra

A. Maximo and R. Marroquim and R. Farias

LCG / PESC / COPPE / University of Rio de Janeiro, Brazil

