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COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
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1. animação. 2. quadro-chave. 3. motion capture.

4. projeção multidimensional. I. Esperança, Claudio.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Tı́tulo.

iii
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

ENRIQUECENDO ANIMAÇÕES EM QUADROS-CHAVES ESPACIAIS COM
MOVIMENTO CAPTURADO

Bernardo Fortunato Costa

Junho/2018

Orientador: Claudio Esperança

Programa: Engenharia de Sistemas e Computação

Movimento capturado (mocap) produz animações de personagens com grande
realismo mas a um custo alto. A utilização de quadros-chave torna mais
difı́cil um resultado com realismo mas torna mais fácil o controle da animação.
Neste trabalho, mostramos como combinar o uso de quadros-chaves espaciais
– Spatial Keyframing (SK) Framework – de IGARASHI et al. [1] e técnicas de
projeção multidimensional para reutilizar dados de movimento capturado de
várias maneiras. Mostramos também como projeções multidimensionais podem
ser utilizadas para visualização e análise de movimento. Propomos um método
de compactação de dados de mocap utilizando a reconstrução de poses por meio
do algoritmo de quadros-chaves espaciais. Também apresentamos uma técnica
de otimização para as projeções multidimensionais que melhora a reconstrução
do movimento e que pode ser aplicada em outros casos onde um algoritmo de
retroprojeção esteja dado.
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ENHANCING SPATIAL KEYFRAME ANIMATIONS WITH MOTION
CAPTURE

Bernardo Fortunato Costa

June/2018

Advisor: Claudio Esperança

Department: Systems Engineering and Computer Science

While motion capture (mocap) achieves realistic character animation at great
cost, keyframing is capable of producing less realistic but more controllable an-
imations. In this work we show how to combine the Spatial Keyframing (SK)
Framework of IGARASHI et al. [1] and multidimensional projection techniques to
reuse mocap data in several ways. Additionally, we show that multidimensional
projection also can be used for visualization and motion analysis. We also pro-
pose a method for mocap compaction with the help of SK’s pose reconstruction
(backprojection) algorithm. Finally, we present a novel multidimensional projec-
tion optimization technique that significantly enhances SK-based reconstruction
and can also be applied to other contexts where a backprojection algorithm is
available.
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Chapter 1

Introduction

Character animation focuses on bringing life to a particular character model.
There are several ways of animating a character in a scene. One popular way
is rigging a skeleton to a character model (a skin) such that when the skeleton
pose is changed, so does the model. This binds the character movements to the
degrees of freedom (DOF) of this skeleton.

In standard keyframe-based animation, some key poses are created by artists
and interpolated at each frame, sometimes using manually adjusted Bézier
curves. However, for complicated or extended animations, this process turns
out to be difficult and time-consuming. As an alternative, the approach known
as motion capture or mocap was developed. In it, a human actor wearing a special
suit performs movements which are recorded by a set of cameras and sensors.
After some processing, it is possible to build a complete description of the actor’s
movement in the form of a set of skeleton poses and positions sampled with high
precision, both in time and space. A typical mocap file has a description of the
skeleton’s shape and articulations, together with a set of poses, each containing a
timestamp, the rotation of each joint and a translation vector of the root joint with
respect to a standard rest pose.

Another animation authoring framework called spatial keyframing (SK) was
proposed by IGARASHI et al. [1]. The main idea is to associate keyframes (poses)
to carefully placed points on a plane rather than to points in time. Although
simple in thesis, spatial keyframing still requires keyframe poses to be authored
manually, which is a time-consuming task when many such poses are required or
when the skeleton contains many joints. One way to help the process, therefore,
is to harvest interesting poses from raw mocap files. The present work investi-
gates algorithms and techniques to accomplish just that. Moreover, we propose
using multidimensional projection techniques to automatically suggest an opti-
mal placement for the spatial keyframes on the plane.

Another benefit of finding a good method to project points in pose space to
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a plane is that it also serves as a tool for the analysis of mocap files. The idea is
that the movement contained in a mocap can be visualized as a trajectory in 2D
space. Since a good projection method ensures that similar poses are projected
onto points close to each other, the plane itself can be viewed as a pose similarity
space. Thus, for instance, a cyclic movement is commonly projected onto a closed
curve.

Finally, multidimensional projection of mocap data can be used as a tool for
motion compression. Since mocap files ordinarily contain in excess of 60 frames
per second, a common lossy compression scheme consists of selecting important
frames and reconstructing the complete motion by interpolation. Although this
interpolation is frequently conducted using time as parameter, we show how spa-
tial keyframing can be adapted for this purpose.

In a nutshell, the following items can be listed as contributions of this work:

1. Repurposes multidimensional visualization techniques to the problem of
selecting key poses from mocap data and project them on a plane so that
they can be used in the Spatial Keyframe animation Framework (SKF).

2. Empirically evaluates several multidimensional projection schemes in their
application to mocap data.

3. Describes the use of SKF in compressing mocap data through decimation
and reconstruction and, in particular, introduces a non-linear projection op-
timization algorithm that yields smaller reconstruction errors. This algo-
rithm is not specific to mocap data, but can also be used with other data,
provided a back-projection algorithm and an error metric are available.
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Chapter 2

Related work

In this chapter, we review the literature from areas related to the present work.

2.1 Animation authoring

Authoring in the context of animation is the process of creating new content man-
ually or using specialized techniques. Traditional keyframe animation [2] has
been widely used in the animation industry as the main way to create content.
This technique consists of creating a skeleton for a given character1 and configur-
ing its pose, i.e., the rotations and positions of its bones on the scene for a set of
timestamps. Each pair pose/timestamp is called a keyframe. The animation is pro-
duced by estimating poses (“in-betweens”) for time instants taken in succession
using keyframe interpolation.

Later, motion capture (mocap) became available to animators as a way to reach
realism by reproducing a movement recorded in a real environment by actors. As
a general rule, this type of animation achieves greater quality compared to tradi-
tional keyframing, where key poses are manually crafted by the animator. At an
early stage, mocap data was used as a single shot without concerns to further
reuse in the future rather than the simple reproduction of the recorded move-
ment. As the production of mocap-based animation grew, mocap data started to
become available for the general public at lower cost. The use of mocap to create
new content remained unexplored until KOVAR et al.[3] showed a way to reuse
mocap data other than by simple reproduction. It uses the definition of motion
graphs where short clips taken from mocap files are viewed as vertices and pos-
sible transitions between them are modeled as edges. Thus, a longer movement
sequence can be defined as a path on the graph where transitions are smoothed

1In the context of this work, a character is described by an articulated hierarchy of bones or
simply a skeleton. However, keyframing can also be used to animate non-articulated or inanimate
objects.
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out with the aid of a pose interpolation algorithm. Following their idea, LEE
et al.[4] enhances motion graphs with a sketching module to describe the move-
ment trajectory.

The work of PULLEN and BREGLER[5] tries to produce new animations us-
ing keyframe and motion capture. It it one of the earliest works in the context of
animation that tries to mix the strengths of both methods: the quality achieved
by mocap with the flexibility provided by keyframes. Their idea is to make mo-
cap data assist keyframe animation lending details not specified by the animator.
SAFONOVA et al. [6] describes a sketch-based interface so that the animator may
roughly specify the character movement which will later be enhanced by the ad-
dition of mocap and defined restrictions, such as first and last pose and contacts
on the floor or objects. They use a mocap database in compact format to syn-
thesize the sketched movement which later is adapted to satisfy all restrictions
imposed by the animator.

Of special interest in the context of the present work is the character anima-
tion framework proposed by IGARASHI et al.[1] called Spatial Keyframing (SK).
That framework aims at producing casual animations where a small number of
poses are manually crafted and associated with special points on a plane that is
used as an interaction space2. This is combined with a novel pose interpolation
algorithm based on Radial Basis Functions (RBFs [7]), such that any point on the
interaction plane can be mapped to a different pose. A new animation can then
be synthesized by moving a mouse or some other pointing device on the plane.
This process not only provides the required sequence of poses, but also the tim-
ing for the movement. SK does not address the problem of synthesizing positions
for the moving character, but only the rotations of the skeleton joints, although
an ingenious heuristic is suggested based on tracking the contact point between
the skeleton and the floor or other surfaces.

2.2 Pose selection and information extraction

Decimating irrelevant poses from mocap data is a common way to produce a
compact representation of a movement. The reconstruction of the original data
is done by interpolating the small subset of poses that survive this decimation
process. Since these play the same role of keyframes used in keyframe-based
animation, the process is also called keyframe extraction.

A popular idea for extracting keyframes is curve simplification. LIM and
THALMANN [8] view mocap data as a curve parameterized by time and pro-

2The authors even admit using a 3D volume as an interaction space, but interaction in 3D is
considerably harder to control.
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poses using a technique [9] for approximating such curves with a polygonal line.
Later, this algorithm became known as simple curve simplification (SCS). A pseu-
docode version for it can be seen in Algorithm 1. This idea of using curve sim-
plification heuristics was later enhanced by XIAO et al. [10] by employing an op-
timized selection strategy, which they named layered curve simplification (LCS).
They try to optimize the running time of the SCS algorithm by discarding some
frames for a first solution. If the reached result is below a certain quality thresh-
old, these discarded frames can be reconsidered to provide a full scan solution.
Both SCS and LCS start with a minimal subset of the original mocap data and
try to repeatedly select relevant keyframes by measuring the similarity between
a local interpolation and the original frame. On the other hand, TOGAWA and
OKUDA [11] do the reverse: start with the full set and iteratively discard frames
which least contribute to the interpolation, naming their contribution as position-
based (PB) strategy. Algorithm 2 shows in pseudocode the details of how PB
searches for keyframes.

Other possible approaches include clustering methods, matrix factorization
or genetic algorithms. Clustering methods divide frames into clusters and search
for a representative frame in each group. The works of BULUT and CAPIN [12]
and HALIT and CAPIN [13] fall in this category. A relevant contribution of both
is to consider also dynamic information in their clustering metrics. Matrix fac-
torization uses linear algebra methods to reconstruct mocap data represented in
matrix format. The work of HUANG et al. [14], called key probe, and the work
of JIN et al. [15] are examples of such algorithms based on matrix factorization.
Genetic algorithms is a solution search approach inspired in the natural selection
of species in biology: possible solutions are mixed to find new ones at each it-
eration. The ones that show gain produce new “offspring” while the ones that
do not are not selected for reproduction in next iterations. The work of ZHANG
et al. [16] tries to find keyframes using this heuristic. Although all these other ap-
proaches present some advantages, curve simplification methods became more
popular due to a mix of heuristic simplicity and satisfactory results.

2.3 Multidimensional projection

The key motivation behind the use of dimensionality reduction approaches in the
this work is that much of the redundancy found in mocap data can be attributed
to DOFs that are hierarchically or functionally related. Note that in the context of
this work, the terms “dimension reduction” and “multidimensional projection”
are used interchangeably. ARIKAN [17] proposes to use principal component
analysis (PCA)[18] on mocap data, together with clustering, to get a good rate of
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compaction. SAFONOVA et al. [6] also use PCA to compact their recorded mocap
database and synthesize new movements with the help of a sketch-based inter-
face. PCA discovers the main orthogonal data axes and uses them as a basis to
rewrite the original data. By discarding the least relevant axes, a more compact
basis can be constructed, which can be used to represent a good linear approxi-
mation of the original data. Algorithm 3 details the main steps of how to build a
PCA projection given some data. HALIT and CAPIN [13] and JIN et al. [15] also
use PCA as a way to lower the data dimensionality and save computing time.

Dimension reduction methods can be categorized in many ways. In the con-
text of this work, we divide them with respect to two characteristics: the proposed
projection function type and the solution search strategy for building this func-
tion. In this way, methods can provide projection functions which might be linear
or non-linear. The search for these functions can also favor data locality, in which
case we should refer to them as having a local search approach, while a global
search approach looks for a solution with no commitment to preserving distance
relations in small neighborhoods. PCA, for instance, is a linear projection func-
tion with a global search approach.

ZHANG and CAO [19] and JIN et al. [15] use locally linear embedding (LLE)
[20], a dimension reduction tool, to ease their search for keyframes in the frame
set. LLE tries to find a projection where relative distances between each point
and their nearest neighbors in lower dimension space is preserved in the least
squares sense. The number of nearest neighbors is a parameter of the algorithm.
Algorithm 4 describes in more details how LLE finds its projection. LLE produces
a non-linear projection using a local search strategy.

ASSA et al. [21] also project the motion curve onto a 2D space to find keyframe
candidates. They use a variant of multidimensional scaling (MDS) [22, 23] to
project the motion curve. MDS tries to find a projection such that relative dis-
tances in lower dimension space are as close as possible to the corresponding
distances in the original space in the least squares sense. The distance definition
is a parameter to be chosen. If the euclidean distance is chosen, MDS produces
the same result as PCA. JENKINS and MATARIĆ [24] use another MDS sibling
method called Isomap [25] to reduce human motion to a smaller dimension for
clustering purposes. Isomap turns out to be MDS with geodesic distance as its
distance definition. The geodesic distance matrix can be calculated from the or-
dinary distance matrix by setting to infinity all distances from element pairs that
do not have one of them as their nearest neighbor and then running the Floyd-
Warshall algorithm 5 to compute the shortest paths over the matrix until all in-
finity values are updated. Algorithm 6 describes how a solution can be tailored
for both approaches given a distance matrix as input.
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It is worth noting that dimension reduction techniques such as PCA, MDS
and LLE, besides being used for compaction, can also be employed for other
purposes, most notably for visualization of multidimensional data. For instance,
TEJADA et al. [26] proposed Force, a fast iterative approach to project multidi-
mensional data onto a 2D space, based on neighborhood relationships. Initially, a
distance matrix in high dimensional space is built, after which a random projec-
tion to 2D is constructed and iteratively improved using spring repulsion forces
to try to mimic the distance relationships encoded in the distance matrix. Algo-
rithm 7 shows a pseudocode version of Force. This approach is not guaranteed
to be optimal but has been shown to produce interesting results for data visual-
ization.

Another dimension reduction technique aimed at visualization of multidi-
mensional data is the t-Distributed Stochastic Neighborhood Embedding (t-SNE)
[27, 28]. It has shown promising results with respect to preserving multidimen-
sional data neighborhood on low dimensional projections. Instead of building
the low dimensional data to resemble the distance relations of a distance matrix
in high dimension, like Force or MDS does, it uses conditional probabilities as its
guide the multidimensional projection. The conditional probabilities of both di-
mensions are calculated using the pairwise distance of points which produces the
so called similarity matrix. The high dimension similarity matrix calculus forces
it to be symmetric and the low dimension similarity matrix uses a t-Student dis-
tribution function to calculate its similarity. The t-SNE tries to find a projection
which minimizes the divergence of both similarity matrices by means of gradient
descendant optimization, relocating low dimensional data and recalculating its
similarity matrix at each iteration, making it a non-linear projection method. Al-
gorithm 8 shows how these calculations are done until a solution is reached. The
locality of t-SNE depends on a parameter called perplexity, which determines the
number of effective neighbors while calculating the high dimension similarity
matrix. The higher the perplexity, the closer to a global solution t-SNE is.

JOIA et al. [29] created the so-called local affine multidimensional projec-
tion (LAMP), where a small subset of points – called control points – are ran-
domly picked from the original set and projected using some projection algo-
rithm, whereas the remaining points are projected by means of an affine map ex-
pressed in terms of their distance to the control points in the original space. The
control points can be moved on the projection plane and thus affect the projection
of the whole set. This two-step projection approach aims at providing a way to
interactively explore the high-dimensional point set by offering smoothly vary-
ing projected views. LAMP’s locality comes from its weighting scheme where
closer control points have greater influence than far ones.
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Figure 2.1: Basic RBFP scheme with control points selection using ROLS.

AMORIM et al. [30] propose another two-step projection approach which is
similar to LAMP, but the affine map is replaced by radial basis functions (RBFs)
[7]. In this projection scheme – RBFP for short – control point selection is aided by
a technique called regularized orthogonal least squares (ROLS), a more elaborate
approach compared to the random selection of LAMP. Notice that RBFs have an
advantage over affine maps in the sense that they provide a smoother interpo-
lation. Figure 2.1 shows the stages needed to find a final projection of all points
with this scheme.

Algorithm 9 details the find control points step where we can consider
keyframes as control points in the context of mocap data. Note that this algo-
rithm uses as input a subset of the original data as well as their projections to
2D, computed with some other projection algorithm, e.g., Force, LLE, etc. This
is done in order to reduce the computational cost of this first projection, but also
of the successive Gram-Schmidt orthogonalizations. ROLS selects each control
point by using a standard regression model to determine which instance of G is
responsible for the biggest reduction in the amount of squared error. This is done
by examining each column of matrixA associated with the RBF interpolation (see
Section 2.5). Once the control point is selected, the influence of the corresponding
column is eliminated from A using Gram-Schmidt orthogonalization. After the
control point set K and their projections L are computed, Algorithm 10 can be
invoked to obtain the projection of the remaining (non-control) points.
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2.4 Backward projection

“Unprojection” or backward projection is a less developed field compared to di-
mension reduction. It aims at producing points in the original multidimensional
space which do not belong to the input data set. For instance, the iLAMP [31] ap-
proach uses the same LAMP[29] heuristic to get a backward projection, swapping
high dimension with lower dimension. AMORIM et al. [32] use RBF interpolation
to transport information from the reduced dimension to the original space. Their
work aims at exploring facial expression generation interpolated from a set of
control points selected with specialized heuristics.

IGARASHI et al.[1] also use RBF interpolation to back-project a 2D point onto
a multidimensional skeleton pose, as a way to provide a rapid prototyping envi-
ronment for animators. In this scheme, each input skeleton pose is modeled and
associated with a marker point manually placed on a plane. The idea is to build
an RBF which maps any point on the plane to a pose smoothly interpolated from
the marker point poses. The interpolating RBF uses as a parameter the distances
from the point in question to the various marker points, in order to estimate the
coefficients of the rotation matrix at each skeleton joint. The input is usually a two
dimensional point while the output is a set of 9-dimension vectors corresponding
to coefficients of a rotation matrix of each skeleton bone. The resulting matrices
are then orthonormalized using a relaxation algorithm that yields pure rotation
matrices. The authors convincingly argue that the resulting interpolations are
superior to those obtained by interpolating quaternion coefficients.

The SK animation can be built in two stages. In a first stage, a set of poses
K chosen as keyframes is associated to a set of markers L. The idea is to build
an RBF f such that f(li) = ki for li ∈ L and ki ∈ K. The markers are usually
two-dimensional vectors while the pose is a vector of size nine times the number
of rotational degrees of freedom (DOF) of the skeleton. From these values, the
RBF coefficients are estimated. These coefficients will be used in a second stage
where new poses are created using the position of a controller in the marker space
which is handled by the animator in real time. The controller position is the input
of the previously built RBF which will produce a matrix of coefficients for every
skeleton DOF. These coefficients must be orthonormalized so the resulting matri-
ces are pure rotation matrices. It is also possible to include in the specification a
vector describing the position of the root joint for each pose.

Since mocap data is usually thought of as a function that maps time instants
onto a pose, unprojection can be regarded as simple time-based interpolation.
The most common strategy is to use a simple linear interpolation between the
two closest keyframes in time[8], while XIAO et al.[10] extended this idea by us-
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ing hermitian interpolation between successive keyframes as a way to consider
dynamic information. In both works, rotation is usually interpolated with Euler
angles.

2.5 RBFs and kernels

Radial Basis Functions (RBFs) [7] are used in several places in this work. Firstly,
it is the basis of the spatial keyframe back projection algorithm [1]. Secondly,
it is the basis for the ROLS control point selection algorithm and the associated
RBFP projection approach. An RBF is a real-valued function that approximates
output values depending on the current distance between the input point and
the points where the function is known. These distance definitions are known as
RBF kernels and they smooth the RBF function in different ways, making locality
influence greater or smaller.

Equation 2.1 describes the general terms of this function. The RBF kernel is the
φ(·) function and wj are weights that must be calculated given a pair of input and
output values, where the latter is expected to be single dimensional. However, it
is still possible to use RBFs to interpolate multidimensional data considering each
dimension a different RBF with its proper wj and P (x) coefficients. There are K
values cj called constraints which are input values where the function output is
known. The term P (x) is optional and stands for a linear polynomial component
in the form P (x) = p0 + p1x1 + · · · + pnxn. ROLS and RBFP do not use this
component which is present in the spatial keyframe back-projection algorithm
usually as a two dimensional vector.

f(x) =
K∑
j=1

wjφ(x− cj) + P (x) (2.1)

Given a known pair of input and output values (ci, hi), we can rewrite a set
of Equations 2.1 with these values into a linear system problem described in the
customary matrix form AW = B. Equation 2.2 shows such a system for the
case where input points ci are three-dimensional and the hi points used in B are
one-dimensional. The last four rows are added by imposing restrictions over
the sum of weights so a unique solution is guaranteed in the system with a full
rank matrix. If output values are k-dimensional, rather than solving the system
once for every dimension, it is possible to first invert A and then find the weight
matrix W by computing A−1B. A pseudo-code for computing the weights for a
RBF function that maps an array of points K into a corresponding array of points
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L is given in Algorithm 11.

AW =



φ11 φ12 . . . φ1k 1 cx1 cy1 cz1

φ21 φ22 . . . φ2k 1 cx2 cy2 cz2
...

...
...

...
...

...
...

φk1 φk2 . . . φkk 1 cxk cyk czk
1 1 . . . 1 0 0 0 0

cx1 cx2 . . . cxk 0 0 0 0

cy1 cy2 . . . cyk 0 0 0 0

cz1 cz2 . . . czk 0 0 0 0





w1

w2

...
wk

p0

p1

p2

p3


=



h1

h2
...
hk

0

0

0

0


= B (2.2)

The spatial keyframes scheme uses the modular distance – Equation (2.3) – as
its RBF kernel, i.e., a linear kernel in Euclidean space. Such kernel is not guar-
anteed to preserve locality, but the authors of [1] claim that it produces the best
quality animation interpolation. For this reason, we are sticking with traditional
spatial keyframe kernel for evaluation purposes.

Km(r) = ‖r‖ (2.3)

RBFP also uses RBFs for selecting control points and projecting the remainder
poses, and we follow [30] by using the multiquadric distance – Equation (2.4) –
as RBF kernel, where constant ε is set to 1.

Kmq(r) =
√

1 + (εr)2 (2.4)
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Chapter 3

Mocap compaction

In this chapter we discuss the problem of mocap compaction (or compression),
i.e., the problem of representing the data for a mocap session with only a few of
the original poses. A compression scheme is a coupling between a pose selection
strategy and a pose interpolation (or reconstruction) algorithm. We distinguish
two broad classes of mocap compression approaches. The first, what we may
call the “traditional” approach, consists of selecting a few representative poses
from the original set – the keyframes – while the reconstruction uses time as the
interpolating parameter. The second approach also selects representative poses,
but uses multidimensional projection, so that all poses are mapped to points in
2D, while the reconstruction uses the 2 coordinates of this space as interpolating
parameters. This way, we could consider the selected poses for schemes in the
first approach as temporal keyframes while those for the second approach could be
more properly called spatial keyframes.

3.0.1 Temporal keyframe schemes

The idea for these schemes is to obtain a compressed representation of the orig-
inal mocap data by carefully selecting a subset of poses, with their attached
timestamps, as shown in Fig. 3.1. Let the original mocap contain n poses F =

{p1, p2, . . . , pn} uniformly spaced in time, and let the compressed representation
consisting of a list with m < n keyframe poses K = 〈pi1 , pi2 , . . . , pim〉 and a list of
the corresponding timestamp indices T = 〈i1, i2, . . . , im〉. Then, in order to re-
construct a pose pj not in K we first find the two closest poses pil and pil+1

in K
so that il < j < il+1. Thus, the reconstructed pose p′j can be obtained by linear
interpolation of pil and pil+1

. It is also possible to use a higher order function for
interpolation, like a cubic hermite curve, if we add the tangent at pil and pil+1

. In
fact, in addition to these two, it is also possible to use infinite support reconstruc-
tion functions (RBFs, say), which use all of K.
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Figure 3.1: Workflow for a temporal mocap compression and reconstruction
scheme.

3.1 Spatial keyframe schemes

Time is a natural interpolating domain for mocap data, since successive poses are
necessarily similar due to physics constrains. We may, however, imagine an arti-
ficial “similarity” domain where two closely related poses are mapped to a pair of
close points. We propose constructing such a domain by using multidimensional
projection techniques. Thus, we propose adding to the keyframing pipeline a step
where poses are first projected onto a plane. A skeleton pose is understood as a
vector in high dimensional space, so that a sequence of projected poses with their
corresponding timestamps can be regarded as a 2-dimensional trajectory repre-
senting the motion. This trajectory can be used to recover the original data with
the help of a back-projection algorithm. We adopt the algorithm from IGARASHI
et al. [1] to recover the multidimensional pose from the projected pose, since this
algorithm was specifically devised for this kind of data.

Fig. 3.2 illustrates the workflow for such schemes. Mocap data will feed a
keyframe selection algorithm, just as in a temporal scheme, but an additional step
is required, where a multidimensional projection algorithm is used to project all
poses onto a plane. Thus, in addition to a set K of keyframes, the compressed rep-
resentation also includes set Q = {q1, q2, . . . , qn}, where qi represents a projection
of pi.

We should also distinguish common projection approaches from those em-
ploying control points, such as LAMP and RBFP. In the latter schemes, the set
of control points could conceivably be conflated with the set of keyframes, in
the sense that both consist of representative subsets of the original data. Thus,
RBFP-based mocap compression and reconstruction follows the slightly different
workflow depicted in Figure 3.3.

For implementing any keyframe selection algorithm in the context of motion
capture, we need to define a function for pose distance, i.e., a measure of dissim-
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Figure 3.3: Workflow for mocap compression and reconstruction with spatial
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ilarity. One popular way to measure pose distance is a weighted sum of squared
distances between hierarchically-equivalent joint positions. This is shown in
Equation (3.1), where A and B are skeleton poses, J is the joint set, and wj is
a weight assigned to the j’th joint according to its importance. If no motivation
exists to privilege certain members of the skeleton, it is customary to use uniform
weights.

Dp(A,B) =
∑
j∈J

wj‖P (Aj)− P (Bj)‖2 (3.1)

A problem that arises when we stick to error metrics based on joint positions
is that they are not translation-invariant, i.e., a pose can present a huge error if
compared to itself repeated at a different position or, conversely, it might present
a smaller error with respect to a completely different pose if the skeleton root
joint is in the same position. Another way of measuring the pose distance is to
use joint data in rotation space such as quaternions, rotation matrices or Euler
angles. Quaternions and rotation matrices are preferable to Euler angles since
they do not depend on the particular axis order used for the latter. However, this
would bring us the difficulty of measuring error contributions in a hierarchical
chain of joints, where errors in elements at higher levels of the hierarchy tend
to cascade to those at lower levels. To mitigate this effect, we propose to use
as joint weights the longest path between the joint and the furthest end effector.
Equation (3.2) defines this distance metric in terms of rotation matrices, where A
and B are skeleton poses, R is the rotation joint set composed of matrices, Tr[·] is
the trace operator andwr is a weight assigned to the r’th joint. In our experiments,
we use this rotational pose distance definition for pose projection.

Dq(A,B) =
∑
r∈R

wr arccos(
Tr[ArB

>
r ]− 1

2
) (3.2)

The following multidimensional projection methods were used in our experi-
ments: among the linear methods and global, we have considered PCA [33], the
Force approach [26] and MDS [22]. Among the non-linear and local methods, we
have considered RBFP [30], Isomap [25], LLE [20] and t-SNE [27]. Figure 6.2 con-
tains sample results obtained with all of these except RBFP. RBFP adopts a two-
step projection approach using control points. In our experiments, the first step of
RBFP was evaluated with the use of Force, Isomap, MDS, LLE, PCA and t-SNE.
Recall that RBFP prescribes the use of ROLS for keyframe selection. Figure 3.4
illustrates projections for the same dataset using these five RBFP variations.
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Figure 3.4: Results obtained by using two-step RBFP projection variants on poses
of file 05 10.bvh of the CMU Motion Capture database. The projection for the
first step was obtained using the following algorithms (from left to right): Force,
LLE, MDS, PCA and t-SNE.

16



Chapter 4

Projection optimization

In spatial keyframe schemes, the 2D projection of a key pose is reconstructed
exactly by the back-projection algorithm, but we expect non-key poses to be re-
constructed only approximately. Therefore, an important question is whether the
projection of a non-key pose, as prescribed by the projection algorithm, is optimal,
i.e., whether the back-projection of this point yields the pose with minimum error
with respect to the original pose.

Having this in mind, we propose an optimization algorithm that will help us
to find a better projection of non-key poses. This is shown in Algorithm 12, which
takes as input the set of frames from the mocap (F in Figures 3.2 and 3.3), the sub-
set of keyframes (K), as well as the projection and back-projection algorithms and
produces an optimized set of projected non-key poses (Q). This algorithm imple-
ments gradient descent[34] optimization where, at each iteration, the gradient of
a given function is estimated and steps in the gradient direction are taken to reach
a local minimum. The original point computed by the non-optimized projection
algorithm is used as a seed for the search.

An important component of the process is the estimation of the gradient at a
given point. The numerical process used in our algorithm estimates the gradient
around a particular 2D point by back-projecting four neighbor points within a
disk of small radius and computing the error with respect to the original pose.
If all points yield a bigger error than the original point, then that point is a local
minimum. Otherwise, a gradient direction is computed based on the error vari-
ation. The radius is calculated taking the average distance between the analyzed
point and its two nearest neighbors. Considering mocap data, we can simply
choose the previous and next frame in time to save computing time. Parameters
α and δ in the algorithm are typically chosen in the interval [0, 1] and were set to
0.5 in our experiments.

Figure 4.1 shows the sample projections of Figure 6.2 optimized with Algo-
rithm 12. We note that the optimization tends to scatter non-key frames with
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Figure 4.1: Optimized versions of the projections using Uniform Sampling shown
in Figure 6.2. From left to right, first row has Force, LLE, MDS while second row
has PCA and t-SNE.

respect to the non-optimized projections. Clearly, cases where greater differences
exist between the optimized and original projections can be attributed to the orig-
inal algorithm choosing poorer positions in the first place.

We also note that the optimization algorithm can be adapted to other uses of
multidimensional projection for which a back-projection is available and an error
metric is defined. Projection algorithms using control points such as LAMP [29]
and RBFP [30] already prescribe corresponding back-projection algorithms ([31]
and [32], respectively). If no back-projection algorithm is available, it is possible
to use RBFs as in [32] or [1]. In this case, the optimization algorithm must be
run with a subset of the input data as control points, and will optimize only the
projection of the points not included in this set. This means that if, say 50% of
the input is used in the back-projection, only the remaining 50% will be subject to
displacement by the optimizer. On the other hand, if only a small set of control
points is used, the back-projector will probably yield poorer estimations.

The projection optimization algorithm can also be evaluated by means of its
capacity to preserve distance and neighborhood relations in the low dimension
space, not only by its capacity to reproduce the original high dimension data.
A common metric used for this purpose is the stress function (see Equation 4.1)
which tries to measure how distance relations in high dimension space given by
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Figure 4.2: A take of 12 poses from file 05 10 which can be seen as projections in
Figure 6.2 and Figure 4.1.
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dij = ‖Xi−Xj‖ are similar to the corresponding distances in low dimension space
δij = ‖Yi − Yj‖. In general, as the projection gets better, the stress becomes lower.
Stress is also a metric used to measure the quality of multidimensional data vi-
sualization in 2D. In Chapter 5 we present several experiments with mocap data
and other classic datasets that indicate a significant improvement in the quality
of the projection obtained with RBFP.

s(X, Y ) =

∑n
i=1

∑n
j=i+1(δij − dij)2∑n

i=1

∑n
j=i+1 δ

2
ij

(4.1)
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Chapter 5

Experiments

The main question we face is whether there is any gain in terms of quality when
using spatial keyframes over traditional temporal schemes. To answer it, each
compression scheme is evaluated by measuring the error between the recon-
structed and the original animation, for a set of mocap files. The reconstruction
quality is estimated using the error measured by Equation (3.2) divided by the
number of frames in the mocap file and by the number of joints of the skeleton,
to make this measure independent of file size or skeleton topology. We used as
input data a subset of the CMU Mocap database[35] with 70 files ranging in size
from 129 to 1146 frames. In particular, we used files in BVH format converted for
the 3DMax animation software.

All experiments consist of compressing mocap data and measuring the error
of the reconstructed mocap with respect to the original. The compaction schemes
vary according to three main aspects:

(a) The keyframe selection strategy, chosen from: PB, SCS, ROLS, and Uniform
Sampling (US), which selects keyframes at regular time intervals.

(b) The interpolation algorithm. For temporal schemes, these can be Linear or
Hermitian interpolation of rotations expressed with Euler angles, or Spherical
linear (Slerp) interpolation of rotations expressed as quaternions. All spatial
schemes use the back-projection algorithm proposed by Igarashi et al. (see
Section 3.1).

(c) For experiments using spatial keyframes we tested 6 main projection algo-
rithms for the markers, namely: Force, MDS, LLE, PCA, Isomap and t-SNE.
Our LLE implementation uses the 15 nearest neighbors to reconstruct its sur-
rounding areas. Force uses 50 iterations to reach its final projection. Exper-
iments with Isomap use 14 neighbors for the initial estimation of geodesic
distances. Experiments with t-SNE use a perplexity value of 50. The projec-
tion algorithms correspond to multidimensional projection of frames using

21



the strategies discussed earlier. In addition to these single-step schemes, we
also tested 6 RBFP-based projection schemes (see Figure 3.3) where the first
step (keyframe projection) is performed with one of the former projection al-
gorithms and the remaining frames are projected with RBFs.

A preliminary batch of tests was conducted in order to investigate how the
compaction schemes fare with respect to the desired compaction ratio. Since
this ultimately depends on the ratio between keyframes and total frames (KF ra-
tio), we selected 8 representative animations and four compaction schemes, two
temporal (Linear and Slerp) and two spatial (MDS and t-SNE), all run with SCS
keyframe selection strategy, and measured the obtained error for ratios between
1 and 10%. Figure 5.1 show the error plot of these files. This experiment reveals
that error decreases sharply until reaching a KF ratio of about 4%, after which
the error decreases at a slower rate. We used this observation to restrict further
comparison tests to a KF ratio of 3%, since a smaller ratio would probably lead to
bad reconstructions and a larger ratio would probably not reveal much about ad-
vantages of one scheme over another. It could be argued that rather than using a
fixed KF ratio, a better comparison would maintain a desired minimum error and
gauge what KF ratio would be required to attain it. Such an experimental setup,
however, would be considerably more strenuous, since each scheme would have
to be run several times, adjusting the KF ratio until reaching the desired error.

Figure 5.2 shows the average error per frame per joint for various combina-
tions of selection and interpolation strategies at 3% KF ratio. The examination of
these charts leads us to a few observations:

1. Temporal schemes as Slerp, Linear and Hermitian interpolation work well
and are quite similar in terms of average error measure.

2. More sophisticate keyframe selection algorithms do not, in general, produce
better results than the naive uniform sampling.

3. Spatial keyframe schemes produce good results but only if the optimized
projection of (non-key) frames is used.

In particular, the overall best result was obtained with optimized t-SNE projection
and uniform sampling, with an average error of 0.618 per frame per joint. On the
other hand, the temporal scheme that yielded the smallest average error – 0.826
per frame per joint – was the Slerp interpolation combined with SCS keyframe
selection.

The results shown in Figure 5.2 were produced by averaging the error over all
70 mocap files, which might hide important outliers. For a more detailed compar-
ison, one may examine the box-plot shown in Figure 5.3 (see also the numeric val-
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ues in Table 5.1)1. This chart omits the non-optimized spatial keyframe schemes
and the Slerp-based temporal scheme. All experiments were run with keyframes
selected by uniform sampling. The figure reveals that all temporal schemes ex-
hibit a larger median than all spatial keyframe schemes. In particular, t-SNE has
the smallest median and also the smallest first quartile. Isomap has the lowest
minimum and LLE has the lowest third quartile. However, all except PCA show
a few outliers. All spatial keyframe schemes with optimized projection show
improvements with respect to temporal schemes. The gain related to the use of
Spatial keyframe schemes is that the error per frame is reduced by up to 30 %,
considering the median of t-SNE optimized projection and Slerp as a temporal
scheme.

Scheme Boxplot values
Wbot Q1 Q2 Q3 Wtop OL

Hermitian 0.252 0.543 0.719 0.992 1.618 5
Linear 0.24 0.545 0.732 1.025 1.721 3
Slerp 0.222 0.52 0.732 0.958 1.583 9

1D-RBF 0.222 0.515 0.729 0.958 1.613 8
Force 0.294 0.463 0.668 0.97 1.608 1

Isomap 0.254 0.429 0.54 0.864 1.293 4
LLE 0.249 0.4 0.525 0.806 1.242 2
MDS 0.291 0.428 0.587 0.815 1.317 2
PCA 0.263 0.437 0.628 0.97 1.698 0

t-SNE 0.252 0.382 0.515 0.809 1.476 1

Table 5.1: Boxplot values. Wbot and Wtop are the values for bottom and top
whiskers, Q1 and Q3 are first and third quartiles, Q2 is the median and OL is
the number of outliers.

Next, two-step projection schemes were evaluated with respect to their anal-
ogous one-step versions. We remind the reader that two-step methods such as
LAMP and RBFP differ from their one-step counterparts in that only control
points (keyframes in our case) are projected in the first step, while the remain-
der points use a different projector – affine maps in the case of LAMP and RBFs
in the case of RBFP. Since early experiments using LAMP yielded consistently
bad reconstructions, we present here only experiments with RBFP coupled with
the ROLS selection strategy as suggested in [30]. Figure 5.4 shows a compari-
son chart between 1- and 2-step schemes, which indicates that RBFP yields poor
results unless followed by optimization.

1This boxplot chart variation draws the bottom “whisker” at the value of the lowest data point
greater than Q1 − 1.5IQR, where Q1 is the first quartile and IQR is the interquartile range. Simi-
larly, the top “whisker” is the highest data point smaller than Q3 + 1.5IQR. Values lying outside
the range between whiskers are considered outliers.
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The execution time measurement for all experiments includes (1) time re-
quired to perform keyframe selection and (2) time to reconstruct the original file
from the selected keyframes. For SK schemes it was also measured the time re-
quired for the particular projection algorithm and the time taken by projection op-
timization if applicable. Of all of these steps, projection is by far the most costly,
being three orders of magnitude bigger than both selection and reconstruction
times, whereas optimization times range from 1 to 5% of the respective projec-
tion time. This indicates that temporal schemes are cheaper and faster than SK
schemes. Taking a closer look at Figure 5.5 which shows average projection times
for each algorithm, it is possible to notice that the best projectors are also the ones
with largest running time. However, non-optimized projections were not as well
suited as their optimized counterparts. In this figure, we can see that PCA is the
fastest, while t-SNE and LLE have longer projection times. Force and MDS are
slower than PCA but four times faster than t-SNE or LLE.

5.1 A note about compression

Our first tests with this framework showed a poor reconstruction for in-betweens
if we neglected the 2D projection for each frame and tried to reconstruct mocap by
tracing the 2D controller trajectory, using only a simple interpolation between the
projected keyframes. This comes from the fact that mocap data is complex and
2D projections, in particular those obtained with optimization, are not smooth
but contain cusps and gaps. Thus, the easiest way to encode such trajectories is
to store the coordinates of all frame projections. This is not required for temporal
compression schemes which only records keyframe timestamps. Once we add
more information to encode trajectories, a trade-off arises between better recon-
struction quality and a less compact format.

The uncompressed data size can be stated as a function of the number of
frames, as described in Equation 5.1, where h is the header size needed for de-
scribing the skeleton hierarchy and other constant parameters, f is the number
of frames and dof the number of joints. The compressed data size for temporal
schemes is described in Equation 5.2, where rkf is the ratio between keyframes
and the number of frames. Remember that for each keyframe, we still need to
keep all rotations and a timestamp or frame id to locate it in time. Equation 5.3
describes the compressed data size for spatial keyframe schemes, adding two
more coordinates to the format.

Considering that for our experiments we have dof = 31 and rkf = 3%, we
can state that the theoretical lower bound for temporal schemes is near 6%, given
that limf→∞

ct(f)
m(f)

≈ 6.06%. Spatial keyframe schemes have a bigger lower bound
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at around 8%, given that limf→∞
cskf (f)

m(f)
≈ 8.15%. The price to be paid for storing

the 2 coordinates of each projected frame is around 2% of size of the original data,
but is probably less if we consider a header size between 0.5% to 5% of the uncom-
pressed file size. This, however, assumes a keyframe ratio of 3%, i.e., the same ra-
tio used in our error-per-frame experiments. From Equation 5.2 and Equation 5.3,
it is easy to see that if both headers h are equal, then the temporal keyframe (rtkf )
ratio has to have values 2/94 ≈ 2.13% above the spatial keyframe ratio (rskkf ) so
both can have the exact same compression amount, since rtkf −rskkf = 2/(3dof +1).
It might be possible to find values of rtkf and rskkf where the compression amount
is the same for both, but these would result in a quality difference in favor of
temporal schemes that the projection optimization would not be able to cover,
at least for keyframe ratios from 1% to 4%, where compression schemes would
be most useful. This is what the charts in Figure 5.1 suggest, as the error differ-
ences shown are mostly above 30 %, considering a difference of 2 % of keyframes
between temporal and spatial keyframes schemes.

m(f) = h+ f(3dof + 3) (5.1)

ct(f) = h+ f(rkf (3dof + 1) + 3) (5.2)

cskf (f) = h+ f(rkf (3dof + 1) + 5) (5.3)

5.2 Projection optimization for visualization

The projection optimization algorithm described in Chapter 4 can also be used for
visualization of multidimensional data in general. In order to assess the enhance-
ment provided by the algorithm, we conducted two experiments. The first uses
mocap data within the compression framework described in Chapter 3, while the
second explores data sets traditionally used in the multidimensional projection
literature.

The evaluation of the projection quality can be conducted subjectively by vi-
sual inspection, but an objective assessment requires the use of some metric such
as the stress (Equation 4.1). Table 5.2 shows the average stress ratio for mocap
projections made with six different projectors and four keyframe or control point
selectors. The average stress ratio is a fraction between the stress of the optimized
projection and the stress of the original projection. Gains for the optimization
algorithm appear when the ratio is less than one. High-dimension distance is
calculated using Equation 3.2, while low-dimension distance is calculated using
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Euclidean distance.
In the first experiment, the back-projection algorithm is the same used for

all mocap experiments, i.e., IGARASHI et al. ’s algorithm for character anima-
tion, using 3% of the input as control points. We tested 6 single-step projection
algorithms with 4 control point selection strategies, as well as the RBFP 2-step
projection algorithm where the seeds were projected with the same 6 single-step
projection algorithms, while the control points were selected with ROLS. The av-
erage results for all 70 data sets used in our compression experiments are shown
in Table 5.2. It is possible to observe consistent stress gain for RBFP, except
when Isomap is the seed projection heuristic. For all others projectors, there is
no real gain in terms of stress. This suggests that the projection optimization al-
gorithm 12 does not, in general, influence the stress measure for these data sets
at least when only 3% of the input is used as keyframes except when using RBFP.

Selection 1-step Projection Algorithms
Algorithms Force Isomap LLE MDS PCA t-SNE

PB 1.145 1.07 1.065 1.173 1.245 1.008
ROLS 1.154 1.057 1.033 1.072 0.926 0.969
SCS 1.043 1.085 1.004 1.121 1.046 0.966
US 1.11 1.098 1.049 1.098 1.247 1.215

Selection 2-step RBFP - Seed Projection Algorithms
Algorithms Force Isomap LLE MDS PCA t-SNE

ROLS 0.396 1.013 0.441 0.585 0.518 0.58

Table 5.2: Average stress ratio for 3% keyframe ratio. Each cell shows the ratio
between the calculated stress of the optimized projection with respect to that of
the original projection. Ratio values below one indicate stress gains only for the
RBFP algorithm, except when Isomap is used to project the seeds.

Figures 5.6 through 5.11 display some of the projections of mocap data ob-
tained with RBFP with and without an optimization. Figure 5.6 shows a walk
cycle. Figure 5.7 relates to actions such as jump and balance. Figure 5.8 shows the
projection of walking over uneven terrain. Figure 5.9 and Figure 5.10 are dance
actions. Finally, Figure 5.11 shows a basketball action. In all these instances, the
optimized projections’ stress is lower than those of the non-optimized projections.
The captions of each figure also include the corresponding improvements in the
reconstruction error metrics (Eq. 3.2).

The second experiment aims at assessing the utility of the optimizer for other
kinds of data sets. For this task, the UCI Machine Learning Repository[36] pro-
vides more that 400 datasets which can be used to test the optimization algo-
rithm both with respect to stress gain and visually. Seven datasets were selected
for analysis of the RBFP projection algorithm coupled with 2-step ROLS control
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points selection and six different seed projectors. In all tests, the optimizer uses a
3% sample of the input. Table 5.3 shows the stress ratio for these datasets. Except
for the Yeast database using MDS seed projection, there is no other occurrence
of a worse projection using the optimization algorithm. Datasets like Ionosphere
or Wine show gains for almost all seed projectors while Page blocks, Clouds or
Seeds tend to yield modest gains, except for Clouds and Seeds with LLE. The
back-projection algorithm used for these experiments is a RBF function described
in Equation 2.1 using the modular kernel 2.3 and a polynomial term. For these
datasets, we need to discover the two nearest neighbors which must be used in
place of the previous and next time “frames” in Algorithm 12, as there is no nat-
ural dimension to order the points for these data.

Datasets Seed Projection Algorithms AttributesForce Isomap LLE MDS PCA t-SNE
Page blocks 0.977 0.958 0.877 0.96 0.958 0.996 10

Yeast 0.851 0.609 0.119 2.023 0.249 0.299 8
Ionosphere 0.856 0.456 0.405 0.358 0.416 0.715 34

Cloud 1 1 0.073 1 1 0.994 10
Iris 0.96 0.875 0.423 0.551 0.959 0.611 4

Seeds 1 1 0.138 0.845 1 1 7
Wine 0.717 0.71 0.444 0.513 0.849 0.799 13

Table 5.3: Stress ratio for UCL datasets. The ratio is a fraction between stress
calculated for 2-step ROLS with and without optimization. Values below one
show stress gain for the optimization.

A visual analysis of these datasets can be conducted with the help of Fig-
ures 5.12 through 5.17 showing samples of the results, where each figure samples
a different seed projection algorithm. Figure 5.12 shows the Ionosphere database
using the MDS seed projector. The left projection is always the 2-step ROLS with-
out optimization while the one on the right is the optimized projection. Fig-
ure 5.13 is the Iris dataset showing varieties of flowers. Figure 5.14 shows the
dataset of wheat varieties. Figure 5.15 shows wine varieties. Figure 5.16 shows
classification from blocks of page layout detected by a segmentation process. Fig-
ure 5.17 shows classes of protein localization sites in a cell.
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(a) Action: playgound - climb, jump down, dan-
gle, legs push off against
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(b) Action: swordplay
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(c) Action: walk on uneven terrain
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(d) Action: dance - small jetes, pirouette
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(e) Action: basketball - forward dribble, 90-
degree right turns, crossover dribble
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(f) Action: walk
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(g) Action: run
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(h) Action: navigate - walk forward, backward,
sideways

Figure 5.1: Error per frame per joint versus keyframe percentage for five different
interpolators with SCS keyframe selector. Each file represents a set of different
movements. Error evolution shows fast decreasing until reaching 2 to 4%.
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(c) SK schemes (2D optimized)

Figure 5.2: Error per frame per joint for temporal and spatial keyframe (single-
step) schemes with KF ratio of 3%. Average of 70 files.
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Figure 5.3: Error per frame per joint boxplot for temporal and spatial keyframe
schemes with KF ratio of 3%. Values are available at Table 5.1.
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Figure 5.4: Error per frame per joint for ROLS keyframe selection with 1 and
2-step projection approach. KF ratio is 3%. Average of 70 files.
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Figure 5.5: Projection running time in seconds per frame for spatial keyframe
schemes with KF ratio of 3%.

Figure 5.6: Walk cycle. On the left, standard 2-step ROLS projection using LLE.
On the right, the same projection using the GD optimization algorithm. Control
points are crosses and non-control points are dots. CMU file is 02 02. Stress ratio
is 44 %. Error ratio is 35 %.
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Figure 5.7: Jump and balance. On the left, standard 2-step ROLS projection using
Force. On the right, the same projection using the GD optimization algorithm.
Control points are crosses and non-control points are dots. CMU file is 02 04.
Stress ratio is 40 %. Error ratio is 57 %.

Figure 5.8: Walk on uneven terrain. On the left, standard 2-step ROLS projection
using MDS. On the right, the same projection using the GD optimization algo-
rithm. Control points are crosses and non-control points are dots. CMU file is
03 01. Stress ratio is 52 %. Error ratio is 36 %.
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Figure 5.9: Dance: glissade devant, glissade derriere, attitude/arabesque. On
the left, standard 2-step ROLS projection using t-SNE. On the right, the same
projection using the GD optimization algorithm. Control points are crosses and
non-control points are dots. CMU file is 05 09. Stress ratio is 79 %. Error ratio is
51 %.

Figure 5.10: Dance: small jetés, pirouette. On the left, standard 2-step ROLS pro-
jection using PCA. On the right, the same projection using the GD optimization
algorithm. Control points are crosses and non-control points are dots. CMU file
is 05 13. Stress ratio is 68 %. Error ratio is 60 %.
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Figure 5.11: Basketball: forward dribble, 90-degree right turns. On the left, stan-
dard 2-step ROLS projection using Isomap. On the right, the same projection
using the GD optimization algorithm. Control points are crosses and non-control
points are dots. CMU file is 06 11. Stress ratio is 88 %. Error ratio is 62 %.

Figure 5.12: Ionosphere database. From left to right: 2-step ROLS and 2 step
ROLS optimized both using MDS. Stress ratio is 36 %. Control points are crosses
and non-control points are dots. Green means “good” and blue means “bad”
where good or bad is a classification corresponding to a perceptron training algo-
rithm.

34



Figure 5.13: Iris database. From left to right: 2-step ROLS and 2-step ROLS op-
timized both using Isomap. Stress ratio is 55 %. Control points are crosses and
non-control points are dots. Blue color means Iris-setosa, green color means Iris-
versicolor and red means Iris-virginica.

Figure 5.14: Seeds database. From left to right: 2-step ROLS and 2-step ROLS
optimized both using LLE. Stress ratio is 14 %. Control points are crosses and
non-control points are dots. Classification of this dataset is the kernel of three
different varieties of wheat: Kama (blue), Rosa (green) and Canadian (red).
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Figure 5.15: Wine database. From left to right: 2-step ROLS and 2-step ROLS
optimized both using Force. Stress ratio is 72 %. Control points are crosses and
non-control points are dots. Dataset classification divides three different cultivars
of wine in Italy: 1 (blue), 2 (green) and 3 (red).

Figure 5.16: Page blocks database. From left to right: 2-step ROLS and 2-step
ROLS optimized both using PCA. Stress ratio is 96 %. Control points are crosses
and non-control points are dots. Dataset comprises five classes: text (blue), hori-
zontal line (cyan), picture (green), vertical line (magenta) and graphic (red).
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Figure 5.17: Yeast database. From left to right: 2-step ROLS and 2-step ROLS op-
timized both using t-SNE. Stress ratio is 30 %. Control points are crosses and non-
control points are dots. Classes of yeast are cytosolic or cytoskeletal (CYT - blue),
nuclear (NUC - gray), mitochondrial (MIT - orange), membrane protein without
N-terminal signal (ME3 - olive), membrane protein with uncleaved signal (ME2
- red), membrane protein with cleaved signal (ME1 - purple), extracellular (EXC
- green), vacuolar (VAC - brown), peroxisomal (POX - pink) and endoplasmic
reticulum lumen (ERL - cyan).
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Chapter 6

Mocap data reuse in Spatial
Keyframing authoring

The original SK paper targets the construction of casual animations using a rela-
tively small number of poses, since these are tedious to construct and their place-
ment on the interaction plane requires a careful planning so that the animator
can mentally recall which marker corresponds to which pose. A new animation
is created by manually tracing a curve on the plane. In fact, this curve is rather
a trajectory since the points along the curve have associated timestamps. If the
animator makes a mistake, however, the process must be repeated.

In this work we propose techniques to alleviate some of these problems.
Firstly, poses are not manually crafted, but rather harvested from a mocap file.
Secondly, an algorithm is used for placing the markers on the plane. This can
either be a simple algorithm that blindly spreads the markers along a circle, or
can consist of a multidimensional projection algorithm that tries to distribute
the markers according to the similarity of the poses they represent. Lastly, we
propose enriching the authoring pipeline by using sketching techniques such as
curve deformation to visually manipulate the trajectories. Some of these are illus-
trated in Figure 6.1 that shows some snapshots of our SK authoring application.

In our prototype, many of the projection and keyframe extraction algorithms
mentioned in Chapter 2 are implemented. Example plots of these are shown
in Figure 6.2. When used for authoring, a projection algorithm that clearly dis-
tinguishes groups of poses is preferable to those that spread points more uni-
formly. Similarly, at least one pose in each pose group must be selected by a good
keyframe extraction algorithm, even if groups are of different length. In our ex-
periments, t-SNE, LLE and MDS tend to produce nicer results when combined
with either SCS or ROLS extraction. Note that the mocap compaction algorithms
explored in Section 3 try to obtain good reconstructions with as few poses as
possible. On the other hand, when used for authoring, a small set of poses is
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Figure 6.1: SK animation authoring with mocap data. From top to bottom: (1)
After a mocap is read and a uniform sample is placed along the curve, poses can
be inspected by scrubbing the mouse on the interaction plane. (2) the original
trajectory of the mocap is deformed yielding a different animation. (3) A more
sophisticated projection and pose extraction algorithm (ROLS/t-SNE in this case)
reveals the positions in the interaction plane that correspond to poses of interest,
while irrelevant keyframes are removed manually.

preferable to a large set, but keeping the reconstruction errors small is not crit-
ical, given that many poses used in the final animation are interpolated. If the
animator wants to reproduce verbatim certain segments of the original motion,
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these should be densely sampled with keyframes, and preferably disposed along
a smooth curve on the authoring plane.

Other available enhancements to this authoring pipeline can be used to ensure
greater quality in the final animation. For example, to avoid floor sliding or pen-
etration, we can recompute the root joint position for each frame ensuring a fixed
position for the foot end effector with lowest Y coordinate at ground level. This
can be done by finding the inverse affine transformation that computes the foot
position given the root joint, to find the root joint position given the foot place-
ment over the floor. New poses can be created by adjusting some of the available
key poses harvested from mocap data. These need a corresponding marker place-
ment on the 2D controller space. If the user does not require a specific location
for this marker, our projection optimization algorithm 12 can provide such place-
ment if a seed location is given for it. Another feature made available by this
algorithm is the interactive repositioning of keyframes markers on the plane. The
user might prefer a different arrangement of the keyframe markers which would
yield a completely different projection for all in-between frames. The recompu-
tation of such projections can be done using RBFP in a first step to reach a seed
positioning and, with the help of algorithm 12, a final solution can be tailored to
present a better mocap reconstruction quality.

Enhancing the synthesized animation by curve editing bring us some con-
cerns on how to deal with timing. In traditional spatial keyframe, there is no
other way to improve the animation rather than to redo everything from scratch.
However, if we are able to edit the curve, we can improve the animation by relo-
cating its vertices in time and over the 2D plane. We claim that, in a framework
enriched by mocap data, it is possible to use the information borrowed from mo-
cap data on the 2D controller interface to bring additional tools to the spatial
keyframe framework. A practical application, however, will require that several
important issues be addressed. The first key problem is that of temporization.
The mocap contains temporization data for only a particular sequence of poses,
but not for any sequence of poses interpolated from these. Also, the projection
algorithms do not use temporal components of the mocap, which might lead to
gross temporal distortions. This issue can be alleviated with the help of tempo-
ral editing tools similar to those found in traditional keyframe-based animation
frameworks. These might be adapted to the sketch-based paradigm used by spa-
tial keyframing. The second key problem is related to the first and has to do with
physical plausibility. No care is take by SK in order to ensure that joint rotations
agree with physical constraints of a real character. Problems with temporization
might lead to hands and feet move with unrealistic speeds and accelerations.
In particular, the problem of “sliding feet” was never properly addressed in the
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Figure 6.2: Implemented projection and keyframe extraction algorithms. Results
obtained by projecting the poses in file 05 10.bvh from the CMU Motion Cap-
ture database. The color gradient from red to green to blue is used to indicate
time. Bigger dots with black border are keyframe poses (markers). From left to
right, first row has Force and MDS and second row has PCA and t-SNE, where
3% of the poses are selected as keyframes by uniform sampling (US). Third and
fourth rows show the results for LLE with keyframes selected with US, SCS, PB
and ROLS.
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original SK paper, and must be given full attention. These problems can only be
solved by bringing in physical simulation tools to the framework.

42



Chapter 7

Limitations, Conclusions and Future
work

In this work, we have evaluated the use of spatial keyframing together with mo-
tion capture in three contexts: animation authoring, data visualization and com-
pression. We proposed an algorithm for optimizing projections and evaluated it
both in the context of mocap compression and in the context of visualizing other
types of multidimensional data. We have built a prototype system where mo-
cap data can be inspected not only by examining poses in time, but also, through
multidimensional projection, in a 2D pose similarity space. Our prototype also
handles SK-inspired animation authoring where poses can be harvested directly
from the mocap and automatically associated with markers on a plane. These fea-
tures, allied with a sketching interface and the visualization capabilities provided
by projection certainly helps the task of creating new animations, but while the
system is capable of handling more poses and longer animations than the orig-
inal SK framework proposed by Igarashi et al., certain limitations of that work
are still present, namely those regarding the embedding of the animation in a real
scene, such as the authoring of translations. We plan to lift some of these restric-
tions with future versions of this prototype. Also, a formal evaluation of the tool
by professional animators might help us address some of its limitations. With re-
spect to data visualization, we plan to test how would the proposed optimization
algorithm respond to different proportions of control points in the data set and
test if there is an optimum value for it.

Our investigation of the use of multidimensional projection and SK for mocap
compression showed that SK generally attains smaller errors for the same amount
of keyframes than temporal compression. Unfortunately, SK compression has not
been shown to yield substantial gains with respect to standard temporal com-
pression schemes in practice, mostly because in our experiments trajectories in
2D space had to be stored with no compression. Although our experimentation
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has been extensive, we still plan on investigating other projection algorithms, as
well as using 3D projections which might yield better compression rates.
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Appendix A

Algorithm pseudocodes

Algorithm 1 Simple Curve Simplification (SCS) key frame selection algorithm

1: function GETSCSKEYFRAMES(F, k) . Where F - frame set, k - number of key
frames

2: n← |F|
3: Let f be the frame of F with lowest timestamp
4: Let l be the frame of F with highest timestamp
5: K← {f} ∪ {l}
6: Let EF be an array of size n
7: for i← 3, k do
8: Let I be the reconstructed frame set of all timestamps using K as

keyframes
9: for j ← 1, n do

10: Let p be the frame of the j’th timestamp in F
11: Let q be the frame of the j’th timestamp in I
12: Save in EF(j) the pose distance between p and q
13: end for
14: Let m be the frame in F corresponding to the maximal value in EF
15: K← K ∪ {m}
16: end for
17: return K
18: end function
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Algorithm 2 Position Based (PB) key frame selection algorithm

1: function GETPBKEYFRAMES(F, k) . Where F - frame set, k - number of key
frames

2: n = |F|
3: Let EF be an array of size n
4: Let f be the frame of F with lowest timestamp
5: Let l be the frame of F with highest timestamp
6: C← F \ {f, l}
7: D← ∅
8: for all j ∈ C do
9: D← D ∪ {j}

10: Let I be the reconstructed frame set of all timestamps using F \ D as
keyframes

11: Let p be the frame corresponding to timestamp of j in I
12: Save in EF(j) the pose distance between p and j
13: D← D \ {j}
14: end for
15: for i← n, k do
16: Let m be the frame in F \ D corresponding to the minimal value in EF,

except f and l
17: D← D ∪ {m}
18: Let C have all interpolation neighbor frames of m, except f and l
19: for all j ∈ C do
20: D← D ∪ {j}
21: Let I be the reconstructed frame set of all timestamps using F\D as

keyframes
22: Let p be the frame corresponding to timestamp of j in I
23: Save in EF(j) the pose distance between p and j
24: D← D \ {j}
25: end for
26: end for
27: return F \ D
28: end function
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Algorithm 3 PCA projection approach.

1: function GETPCAPROJECTION(D, p) . Where D - data in original
dimension, p - projection dimension

2: Let n be the number of rows in row-wise data matrix Dn×d
3: Let a =

∑
Di

n
be the average of all rows in D

4: Let T be the centralized data matrix such that Ti = Di − a for each row
5: Compute matrix C = T>T
6: Let λ be the eigenvalues vector of C in descending order
7: Let E be the column-wise eigenvectors matrix of C such that eigenvector
Ej has eigenvalue λj

8: Let Md×p be the matrix equal to the first p columns of Ed×d
9: P = DM

10: return P
11: end function

Algorithm 4 LLE projection approach. I is the identity matrix.

1: function GETLLEPROJECTION(D, k, p) . Where D - data in original
dimension, k - number of k-nearest neighbors, p - projection dimension

2: Let n be the number of rows in row-wise data matrix D
3: W ← getWeightMatrix(D, k)
4: M ← (I −W )>(I −W )
5: Let λ be the eigenvalues vector of M in ascending order
6: Let E be the column-wise eigenvectors matrix of M such that eigenvector
Ej has eigenvalue λj

7: for i← 1, n do
8: for j ← 2, p+ 1 do
9: Pi[p−j+2] ← Eijλj

10: end for
11: end for
12: return P
13: end function

14: function GETWEIGHTMATRIX(D, k) . Where D - data in original dimension,
k - number of k-nearest neighbors

15: Let n be the number of rows in row-wise data matrix D
16: for i← 1, n do
17: Let Z have all Dj which is one of the k-nearest neighbors of Di

18: Subtract Di from each row of Z
19: Compute matrix C = ZZ>

20: Solve linear system Cw = ~1
21: Set Wij =

wj∑
k w

for all k-nearest neighbors of Di

22: Set Wij = 0 for all other elements
23: end for
24: return W
25: end function
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Algorithm 5 Floyd-Warshall algorithm for building a geodesic distance matrix.

1: function GETGEODESICDISTANCEMATRIX(M , nn) . Where M - distance
matrix, nn - number of nearest neighbors

2: Let n be the order of square matrix Mn×n
3: for i← 1, n do
4: Gii ← 0
5: end for
6: for i← 1, n do
7: for j ← 1, n do
8: if i and j are one of the nn nearest neighbors then
9: Gij ←Mij

10: Gji ←Mji

11: else
12: Gij ←∞
13: end if
14: end for
15: end for
16: for k ← 1, n do
17: for i← 1, n do
18: for j ← 1, n do
19: if Gij > Gik +Gkj then
20: Gij ← Gik +Gkj

21: end if
22: end for
23: end for
24: end for
25: return G
26: end function

Algorithm 6 MDS-like projection approach. Isomap follows the same approach.

1: function GETPROJECTION(M , p) . Where M - distance matrix, p - projection
dimension

2: Let n be the order of square matrix Mn×n
3: Compute matrix S such that Sij = M2

ij

4: Let ∆ be the Kronecker delta function (Identity of order n)
5: Compute matrix H such that Hij = ∆ij − 1

n

6: T ← −HSH
2

7: Let λ be the eigenvalues vector of T in descending order
8: Let E be the column-wise eigenvectors matrix of T such that eigenvector
Ej has eigenvalue λj

9: for i← 1, n do
10: for j ← 1, p do
11: Pij ← Eijλj
12: end for
13: end for
14: return P
15: end function
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Algorithm 7 Force projection approach. Usually, p = 2, r = 50 and α = 8. tol is a
small number like 10−6.

1: function GETFORCEPROJECTION(D, p, r, α) . Where D - data in original
dimension, p - projection dimension, r - number of iterations, α - step size

2: Let n be the number of elements in D.
3: Compute distance matrix Mn×n such that Mij = Mji = ‖Di −Dj‖
4: Initialize matrix Pn×p with random numbers such that µ = 0 and σ = 1
5: for k ← 1, r do
6: for i← 1, n do
7: for j ← 1, n do
8: v ← Pi − Pj
9: dp← ‖v‖2

10: if dp < tol then
11: dp← tol
12: end if
13: δ ← Mij−dp

α

14: v ← v
dp

15: Pi ← Pi + vδ
16: end for
17: end for
18: end for
19: return P
20: end function
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Algorithm 8 t-SNE projection approach. tol is a small number like 10−5. The
t-SNE parameter pp (perplexity) usually ranges between 15 and 50. Parameters
such as r, η and α are related to gradient descent solution search. Usually, r =
1000, η = 500 and α = 0.5.

1: function GETTSNEPROJECTION(D, p, pp, r, η, α) . Where D -
data in original dimension, p - projection dimension, pp - perplexity value, r -
number of iterations, η - learning parameter, α - momentum parameter

2: H ← getAffinities(D, pp)
3: Initialize matrix Pn×p with random numbers such that µ = 0 and σ = 1
4: while r > 0 do

5: Let L be the matrix where Lij =

{
0 if i = j

(1+‖Pi−Pj‖2)−1∑
k 6=l(1+‖Pk−Pl‖2)−1 if i 6= j

6: for i← 1, n do
7: Gi ← 4

∑
j(Hij − Lij)(Pi − Pj)(1 + ‖Pi − Pj‖2)−1

8: end for
9: Pt ← Pt−1 + ηG+ α(Pt−1 − Pt−2)

10: r ← r − 1
11: end while
12: return P
13: end function

14: function GETAFFINITIES(D, pp) . Where D - data in original dimension, pp -
perplexity value

15: Let n be the number of rows in row-wise data matrix D
16: for i← 1, n do
17: σ ← 1√

2
18: diff ← tol
19: while ‖diff‖ > tol do
20: Compute Lj|i ← exp(−‖Di−Dj‖2/2σ2)∑

k 6=l exp(−‖Dk−Dl‖2/2σ2)

21: Compute h = −
∑

j Lj|i log2 Lj|i
22: Compute diff = h− log2 pp
23: Update σ using the bisection method analyzing diff sign: in-

creases if positive or decreases if negative
24: end while
25: end for
26: L← L+L>

2
. Force L to be a symmetric matrix

27: return L
28: end function
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Algorithm 9 Regularized Othogonal Least-Squares (ROLS) control point / key
frame selection algorithm. Regularization parameter r is a small number like
10−5.

1: function GETROLSSELECTION(G,Q, k, r) . Where G -
n-dimensional data, Q - 2-dimensional data, k - number of control points, r -
regularization parameter

2: Let φmq(x) =
√

1 + x2

3: Build matrix A as shown Equation 2.2 for system AW = Q with kernel
φmq and points in G as cj

4: for i← 1, k do
5: m← getNewControlPoint(A,G,Q, r)
6: Add m to K
7: Eliminate from A the influence of m using Gram-Schmidt orthogonal-

ization
8: end for
9: return K

10: end function

11: function GETNEWCONTROLPOINT(A,G,Q, r) . Where A - RBF matrix, G -
n-dimensional data, Q - 2-dimensional data, r - regularization parameter

12: emax← 0
13: for all g ∈ G do
14: Let a be the column of g in A
15: Let ei = (a>qi+r)2

(q>i qi)(a
>a)

be the error contribution of g and qi is the i’th di-
mension of Q

16: err =
∑

i ei
17: if err > emax then
18: m← g
19: emax← err
20: end if
21: end for
22: return m
23: end function

Algorithm 10 RBF-based projection scheme (RBFP).

1: function RBFPPROJECT(D,K,L) . Where D - data in high dimension data
set, K - control points in high dimension, and L - projected control points

2: W ← buildRBF (K,L)
3: k ← ‖D‖
4: Let di be the i’th vector in D
5: Let φmq(x) =

√
1 + x2

6: for all di ∈ D \H do
7: Compute f(di) as in Equation 2.1 where w and P are given by W
8: Let li = f(di)
9: end for

10: return P as all computed li and previously known L
11: end function
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Algorithm 11 Compute RBF weights.

1: function BUILDRBF(K,L) . Where K and L are arrays of points.
2: Let φ be the chosen kernel
3: Build matrix A as in Equation 2.2 using φ as kernel where constraints cj

are points in K
4: Build matrix B where elements hi are points in L
5: return weight matrix W = A−1B
6: end function
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Algorithm 12 Gradient descent optimization for pose projection

1: function GETOPTIMIZEDPROJECTION(F, Q, K) . Optimizes projection Q.
Where F - frame array, Q - projected pose array, K - keyframe array.

2: O← ∅
3: for i← 1, maxtries do
4: done← true
5: for all fi ∈ F \ {K ∪O} do
6: if gradientDescent(fi,F,Q,K) then
7: O← O ∪ {fi}
8: done← false
9: end if

10: end for
11: if done then
12: break
13: end if
14: end for
15: end function

16: function GRADIENTDESCENT(fi, F, Q, K) .
Updates qi ∈ Q and returns if qi has changed. Where fi - frame, F - frame set,
Q - projected pose set, K - keyframe set.

17: h← (0, 0)
18: vx ← (1, 0)
19: vy ← (0, 1)
20: qi ← projection of fi stored in Q
21: qi+1 ← projection of fi+1 stored in Q
22: qi−1 ← projection of fi−1 stored in Q
23: r ← (‖qi − qi−1‖+ ‖qi − qi+1‖)/2
24: eo ← Err(fi, BackProj(qi,F,Q,K))
25: exp ← Err(fi, BackProj(qi + δrvx,F,Q,K))
26: exn ← Err(fi, BackProj(qi − δrvx,F,Q,K))
27: eyp ← Err(fi, BackProj(qi + δrvy,F,Q,K))
28: eyn ← Err(fi, BackProj(qi − δrvy,F,Q,K))
29: if (eo > exp) ∨ (eo > exn) then
30: h← h+ vx(exn − exp)
31: end if
32: if (eo > eyp) ∨ (eo > eyn) then
33: h← h+ vy(eyn − eyp)
34: end if
35: if ‖h‖ > 0 then
36: h← rh/‖h‖
37: q′i ← qi + αh
38: replace qi by q′i in Q
39: return true
40: else
41: return false
42: end if
43: end function
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