
JCHAR: JAPANESE CHARACTER HANDWRITING ANALYZER

Fernando de Mesentier Silva

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Ricardo Guerra Marroquim

Rio de Janeiro

Julho de 2014

JCHAR: JAPANESE CHARACTER HANDWRITING ANALYZER

Fernando de Mesentier Silva

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Ricardo Guerra Marroquim, D.Sc.

Prof. Claudio Esperança, Ph.D.

Prof. Luiz Henrique de Figueiredo, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JULHO DE 2014

Silva, Fernando de Mesentier

jCHAR: Japanese Character Handwriting

Analyzer/Fernando de Mesentier Silva. – Rio de Janeiro:

UFRJ/COPPE, 2014.

X, 40 p.: il.; 29, 7cm.

Orientador: Ricardo Guerra Marroquim

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2014.

Referências Bibliográficas: p. 39 – 39.

1. Sketching. 2. Stroke analysis. 3.

Japanese language. I. Marroquim, Ricardo Guerra.

II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III.

T́ıtulo.

iii

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

JCHAR: JAPANESE CHARACTER HANDWRITING ANALYZER

Fernando de Mesentier Silva

Julho/2014

Orientador: Ricardo Guerra Marroquim

Programa: Engenharia de Sistemas e Computação

Apresenta-se, nesta dissertação, uma ferramenta de sketching voltada para au-

xiliar aqueles que buscam o aprendizado da ĺıngua escrita japonesa através de uma

interface que disponibiliza feedback pontual sobre caracteres escritos à mão livre. O

usuário escolhe o caractere que ele tentará emular e então o escreve utilizando traços

à mão livre. O sistema analisa os traços e compara a entrada a um template exato,

e então faz sugestões de mudanças que devem ser feitas em aspectos chave para

melhorar a escrita do usuário. A análise do caractere envolve uma bateria de testes

com os traços, além da construção de uma hierarquia de erros em uma tentativa

de identificar erros que levam a outros. Mesmo que o método tenha sido aplicado

diretamente à caligrafia japonesa, ele é extenśıvel a outros tipos de caracteres e

aplicações.

iv

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

JCHAR: JAPANESE CHARACTER HANDWRITING ANALYZER

Fernando de Mesentier Silva

July/2014

Advisor: Ricardo Guerra Marroquim

Department: Systems Engineering and Computer Science

In this work we present a sketching tool that aims at helping those seeking to

learn the Japanese written language through an easy-to-use interface that provides

punctual feedback over handwritten characters. The user chooses the character that

he will try to emulate and then writes it using free hand strokes. The system proceeds

by analyzing the strokes and comparing the input to a ground truth template, and

then gives suggestions on key aspects that need correction to improve the user’s

writing. The character analysis involves a battery of tests with the strokes and

building an error hierarchy in an attempt to trace what error leads to another.

Even though the method is directly applied to Japanese calligraphy, it is extendable

to other types of characters and applications.

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Related work 3

3 Japanese Written Language 7

3.1 Hiragana . 7

3.2 Katakana . 7

3.3 Kanji . 8

4 Character Recognition 10

5 Input processing 15

5.1 Drawing . 15

5.2 Transformation . 16

6 Feature analysis 19

6.1 Character coherence . 19

6.2 Rotation . 20

6.3 Stroke length . 21

6.4 Stroke intersection properties . 21

6.5 Hierarchy . 23

6.6 Examples . 25

7 Implementation 31

7.1 Template Creation . 32

8 Results and Discussion 33

8.1 Interface . 33

8.2 Feedback . 34

vi

8.3 Utility . 34

9 Conclusion 36

10 Future Work 38

Bibliography 39

A Thresholds 40

vii

List of Figures

1.1 Overview . 2

2.1 Concept representation in sKEA . 3

2.2 Kanji decomposition . 6

3.1 Alphabet comparison . 7

3.2 Hiragana . 8

3.3 Katakana . 9

3.4 Kanjis . 9

4.1 Character Recognition work overview 10

4.2 Katakana stroke set . 11

4.3 Example of representation of some characters in our tree 11

4.4 Rotation on the 1-dollar recognizer 12

4.5 Angle Quantization example . 13

4.6 Character Recognition work examples. The two examples in the bot-

tom row are incorrect recognitions made by the system. 14

5.1 Technique overview . 15

5.2 Drawing . 15

5.3 Stroke orientation . 16

6.1 Coherence error example . 19

6.2 Rotation error example . 20

6.3 Stroke length error example . 21

6.4 Two very similar katakana characters 22

6.5 Non-existing intersection error example 22

6.6 Too many intersections error example 22

6.7 Misplaced intersection error example 23

6.8 Intersection proximity example . 23

6.9 Hierarchy example . 26

6.10 Hierarchy calculation example . 27

viii

6.11 Hierarchy used in length error . 28

6.12 Result demonstration . 29

6.13 Result demonstration 2 . 30

7.1 Application interface . 31

7.2 Template . 32

ix

List of Tables

8.1 Knowledge of the Japanese language 33

8.2 Input device used . 34

8.3 Interface results . 34

8.4 Feedback results . 34

8.5 Specific feedback results . 35

8.6 Utility results . 35

A.1 Application thresholds . 40

x

Chapter 1

Introduction

The process of learning to write Japanese characters by hand involves, traditionally,

a lot of repetitions that usually need to be made under the supervision of a teacher,

as characters possesses features that are restrained by a few rules.

The Japanese language is composed by two syllabaries and an alphabet. Among

these, characters share many characteristics in their structure. Features such as

stroke order and orientation need to be stressed over the process of learning as they

play an important role in the written language.

Sketching interfaces have as purpose introducing a more natural way of inter-

acting with a machine. Sketch-based interfaces are usually simpler than traditional

ones, as the freehand sketching input overcomes the need of numerous menus and

buttons, but although more simplistic in its interaction it makes for a much harder

implementation. Input interfaces usually introduce noise and have differences in

sampling ratios, as they capture position over fixed time-frames, faster drawings

have fewer sampling points than slower ones. So, it is necessary to refine input to

produce quality data.

There are a lot of subtleties in analyzing handwriting. Some differences in repre-

sentation are usually allowed in character writing, but incorporating this concept in

a computational model is a complex task. Quality feedback is of most importance,

as it can make the process of learning easier and, consequently, more pleasuring.

In this work we present a method to evaluate the user’s hand-drawn input char-

acter in order to provide substantial and punctual feedback. For our tests we used

the characters in the Katakana alphabet. The application evaluates the input by

comparing its most important features against a template raising a set of possible

corrections to be made. To avoid confusing, or even intimidating, the user, since

a too straightforward approach might find a high number of errors, we propose a

method to create a hierarchy to prioritize and select the most relevant errors in order

to provide the most helpful feedback possible.

Our application starts with the user selecting a character and drawing it. The

1

(a) Character menu (b) Canvas with a drawing (c) Error feedback menu

Figure 1.1: Overview

input drawing is transformed to the same space as the template. Comparison is then

done following the important features present in the Japanese character construc-

tion. Special types of errors detected in the drawing are then sorted by the priority

calculated through a hierarchy algorithm. At last, visual feedback is provided to the

user [Figure 1.1].

The manual selection could also be replaced by an automatic character recog-

nition before the analyses, however, this is out of the scope of this dissertation.

Even though we only present one syllabary here, our work can be extended across

the entire Japanese written language, or any other set of characters with similar

restrictions and properties, given the necessary templates.

We present related work in chapter 2. In chapter 3 we give an introduction to

the Japanese written language. In chapter 4 we comment on our previous work. In

chapter 5 we discuss about the steps taken to process input. In chapter 6 we present

the method used for the feature analyses. In chapter 7 we detail our implementa-

tion. In chapter 8 we show and discuss our experiments. In chapter 9 we give our

conclusions. In chapter 10 we present some future works. In appendix A we list the

parameters and values used in the implementation.

2

Chapter 2

Related work

Figure 2.1: An example of a representation in sKEA. In this drawing the color of
the labels matches the color of the glyphs that they are associated with.

In [1] sKEA(sketching Knowledge Entry Associate) is presented. The purpose of

sKEA is to be a sketching understanding system. The user can make drawings and

give them meanings to build the sketch intended. By drawing a collection of ink

strokes, called glyphs, a visual representation is created, then the user gives it mean-

ing by classifying it as an Entity or Relationship and labeling with a concept present

in the sKEA knowledge database [Figure 2.1]. A sketch can also be compared, and

this comparison analyzed, inside the sKEA interface. Comparison is done using the

Structure-Mapping Engine and is based both on the visual and conceptual material

of the sketches. The sKEA approach is applied in the nuSketch [2] architecture.

Its architecture uses the concepts of working on the spatial relationships that was

present in sKEA, with the visual structure of the sketch being denoted by 5 at-

tributes: groupings, positional, relationship, size and orientation. These attributes,

3

together with the conceptual representation extracted from the labeling, drive the

sense of similarity present in this approach. Although a character learning scheme

could be incorporated in this system, we felt that a more automated and interactive

approach could prove to be beneficial.

An approach closer to ours is the one in CogSketch [3], a system based on the ar-

chitecture presented in nuSketch. As the previous work it is based upon, CogSketch

works to achieve a more general solution for sketch analysis. With the implemen-

tation of the sKEA metalayer interface that can express the relationship between

multiple sketches, and the automatic edge segmentation of a glyph to enable compu-

tation of the qualitative relationship of these edges, CogSketch shows its potential

as a platform for educational software. An experiment of a dedicated educational

interface for CogSketch is presented, where one user can write a problem description

and present its solution. Other users will then try to emulate that solution through

the description of the problem, using the set of labels present, with the platform

giving feedback based on the analogies of both the submitted and actual solution

that are extracted from the differences in the important relationships. For example,

the user could be asked to draw an atom diagram, with the solution being the sketch

on Figure 2.1, the user would be limited to the labels present in the solution, i.e.,

Proton, Electron, Orbitals, Nucleus and Neutron, and could have feedback on an

incorrect relationship, such as drawing the Proton outside the Nucleus. Inputting

a problem description/solution pair is still a tedious task as it is necessary to do

all the labeling and specification of relationships. Since we work with a finite set of

features to generate feedback, our work achieves a more specialized and easy to use

solution by removing the need for labeling and providing more punctual feedback.

Mechanix [4] specializes the CogSketch educational approach to free-body and

truss diagrams. Following the educational interface that was presented in CogSketch,

one user draws a template that represents the solution of a free-body diagram or truss

problem and then other users give their input to be compared, evaluated and given

feedback about. The system focus on identifying closed shapes that could represent

the body or truss that are the main part of the solution, and then comparing those

to the ones in the template. Comparison takes into account geometric properties

and graphical structure, disallowing transformations such as rotation and reflection

as these deviate from the solution previously stated. Our work follows a similar

fashion for Japanese characters, with the templates already given and the necessary

approach for the particularities that we present in this work.

In “How Do Humans Sketch Objects?”[5] an analysis is made of the human

performance on recognizing and categorizing sketches compared to computer recog-

nition techniques. The work defines 250 object categories in which human sketches

were acquired to form a database composed of 20,000 sketches. Then, humans are

4

exposed to a number of random sketches from the database, each from a differ-

ent category, and asked to classify them inside the 250 existing categories. They

achieved an average correct recognition rate of 73%, with results varying for the

different categories. A feature method is then presented with which a computer,

trained with their database, classifies sketches to later identify unknown ones. This

method reaches a 56% accuracy. An interesting point the authors make, that ex-

emplifies the difficulties of analyzing hand drawn sketches, is that humans usually

express their ideas in free hand sketches without image precision, such as drawing a

stick figure to represent a person. However, they are still able to have the meaning

of their drawing fully understood by others.

Furthermore, stroke recognition and analysis methods and algorithms were al-

ready explored by [6–8]. However, the stroke-by-stroke comparisons presented did

not attend our requirements, as it was not enough to provide the feedback we needed

to achieve and left some character ambiguities untreated, so we decided to approach

a solution that rendered character analysis to a multi-stroke comparison. The 1$

Unistroke Recognizer [6] and the Angle Quantization Fast Stroke Matching [7] are

further described in the Character Recognition Chapter of this dissertation.

In the Online Handwritten Kanji Recognition Based on Inter-stroke Grammar

[9] a Kanji character recognizer method using a stochastic context-free grammar

and recognition of substrokes through Hidden Markov Models is documented. Since

Kanjis are composed of multiple parts, the method builds a recursive hierarchical

structure of the different parts that compose the characters until it reaches the actual

strokes [Figure 2.2]. With the process of character composition being represented

in terms of rules, terminal and non-terminal symbols, the stochastic context-free

grammar is built. To better distinguish similar characters, relative position between

parts that compose the characters is also taken into account when recognizing the

handwriting. The work shows that the spatial relationship of the different parts

plays an important part in the representation of a character, a concept which guides

some of the discussions in this dissertation.

5

Figure 2.2: Kanji decomposition into its character-parts.

6

Chapter 3

Japanese Written Language

(a) Hiragana (b) Katakana (c) Kanji

Figure 3.1: The word Japan written in the two syllabaries and the Kanji alphabet.

The Japanese written language is composed of 2 syllabaries, Hiragana and

Katakana, and the Kanji alphabet [Figure 3.1]. Although it is possible to write

every Japanese word without using any Kanji characters, all 3 of them are used

together when writing.

Among all 3 writing groups, the characters follow very similar rules and topology,

usually varying only in complexity.

3.1 Hiragana

The Hiragana [Figure 3.2] is made up of 46 unique characters. Each character

represents one sound in the Japanese language. It’s used mainly to write verbs and

words to which there is no Kanji.

3.2 Katakana

The Katakana [Figure 3.3] has different characters for the same sounds represented

in the Hiragana, their difference being the usage. Katakana is mainly used to write

foreign words.

7

Figure 3.2: Hiragana. Original image taken from http://swordartonline.wikia.com/
on June/16/2014 and is licensed under public domain.

3.3 Kanji

The Kanji [Figure 3.4] is made up of Chinese characters that were adopted by

Japan. It has over 50000 different characters. A single Kanji can represent one or

more different words, and may have more than one pronunciation. Two or more

Kanjis can also be put together to compose a single word. The majority of the

Kanji characters are more complex, having up to 60+ strokes, when compared with

the Hiragana and Katakana characters, which are drawn with 4 strokes maximum.

8

Figure 3.3: Katakana. Original image taken from http://swordartonline.wikia.com/
on June/16/2014 and is licensed under public domain.

Figure 3.4: Example of a few Kanjis. Original image taken from http://www.learn-
japanese.info/ on June/16/2014 and is licensed under public domain.

9

Chapter 4

Character Recognition

Figure 4.1: Character Recognition work overview

The idea for this project came from a previous work [Figure 4.1] with the idea

of identifying handwritten japanese characters using stroke recognition methods.

We decomposed the Katakana characters into a set of strokes [Figure 4.2] that,

when combined, could form any character. So, we wanted to recognize the user

handwritten character by matching the strokes drawn to the templates we composed

from the strokes in the set we constructed. To use the strokes matched to identify

the character we introduced a restriction that the order of the strokes written had

to follow the original stroke order of the character.

By decomposing the Katakana characters into a set of strokes, we built a tree

structure that used the Japanese characters stroke order feature to enable the rep-

resentation of the entire character set in a single tree, with each node being a stroke

and each path from the root to a leaf making up a character.

The order restriction allowed us to represent the characters as a tree data struc-

ture [Figure 4.3]. In our tree, all nodes, except for the root and the leaves, were

one of the strokes in our set. The tree we built had a void root in level 0, in level 1

10

Figure 4.2: Katakana stroke set

were the nodes that represented the first stroke in a character order, in level 2 were

the nodes that represented the second stroke in a character order, and so on for the

other levels. The leaves are the characters that are represented by the nodes, in

order, from the root to leaf. For the Katakana our tree had leaves in levels 2, 3, 4

and 5, as characters vary from 1 to 4 strokes.

Figure 4.3: Example of representation of some characters in our tree

We first approached the solution by identifying each of the user written strokes,

with the 1$ Recognizer [6] method and a template for each stroke that belonged to

the Katakana set.

In the 1$ Recognizer a 4-step algorithm to match template strokes with input is

11

(a) Original drawing (b) Drawing after rotation

Figure 4.4: Example of the rotation step in the 1-dollar recognizer. On the left the
original drawing and on the right the drawing after being rotated to have the angle
between its first point and centroid at 0 ◦.

presented. First, either template or input, is resampled to a fixed number of equidis-

tantly spaced points, so that it is possible to compare strokes drawn in different input

movement speeds (sampling rates). The next step is alignment by performing a ro-

tation. The stroke is rotated so that the angle between its centroid and the first

point is at 0 degrees [Figure 4.4]. After, the stroke is non-uniformly scaled to a

reference bounding box and then translated so that its centroid is at (0, 0). Lastly,

the candidate is compared to all stored templates, finding an average distance, that

is converted to a [0..1] score. The highest score template is the matching result of

the input stroke.

Our results varied for each character, but it was expected that some identifica-

tions would fail as we needed that different rotations of the same line represented

different strokes. For instance, a horizontal straight line and a vertical straight line

should be two different strokes, and the 1 dollar algorithm would recognize as the

same template. To refine our algorithm we improved the solution implementing the

approach described in the Angle Quantization method[7].

In the Fast Stroke Matching by Angle Quantization [Figure 4.5] matching of two

strokes is done in the following way: Strokes are represented by directions, having

every pair of neighbor points pi, pi+1 replaced with a vector vi = pi+1 − pi. Then,

vectors are distributed in a unit circle divided in equal-size bins. A feature Q is

formed by adding up the number of vectors in each bin and normalizing so that

each coefficient represents the percentage of stroke activity in that bin. Strokes are

compared by evaluating the euclidean distance between their two features Q.

With the 1$ algorithm we had, given an input, a score for each template, and we

were looking for the highest score template, indicating the best match. The problem

12

(a) The input stroke
(b) The stroke decomposed
into vectors

(c) The vectors allocated in
the bins

(d) Q feature representation (e) Q feature normalized

Figure 4.5: Angle Quantization example

was that the difference in score between the highest, second and, sometimes, third

highest was too tight to guarantee that it was the best possible match. So, we took

the templates with the best scores from the 1 dollar algorithm and ran them through

the angle-quantization technique, and used its score to aid in the decision of the best

possible match.

With such, we’ve managed to correctly identify 67% of the Katakana characters,

with a correct ratio of 89%, but we had very poor results for the other 33%. Some

of our results are shown in Figure 4.6. The main reason was that even using both

methods to find a solution there were still untreated ambiguities for the set of tem-

plates we had. Also, there were 2 characters in the Katakana that resulted in the

same representation on our database tree.

After further research, we couldn’t find another stroke recognition method to

improve our algorithm and provide a solution with a high enough correct answer

ratio. Through this conclusion, and the fact that character analyzer are seldom

explored, we decided to change the focus of our work to the one we present in the

following chapters.

13

Figure 4.6: Character Recognition work examples. The two examples in the bottom
row are incorrect recognitions made by the system.

14

Chapter 5

Input processing

(a) Character menu
(b) Canvas with a drawing

(c) Error feedback menu

Figure 5.1: Technique overview

The application seeks to provide the user with the best possible feedback, one

that can be spot on, easy to understand and that can lead the user to the corrections

he needs to make. We compare a template of the character along side the drawing to

extract and analyze the key features present in their structures to provide feedback

to the user. Figure 5.1 represents an overview of the key interaction aspects of our

system.

5.1 Drawing

Figure 5.2: Drawing

15

The input is generated by drawing any number of continuous strokes [Figure

5.2]. The input is stored in two different data structures: one that holds the raw

input points and one that holds cubic-Bézier points obtained through the Efficient

Curve Fitting algorithm [10].

The Efficient Curve Fitting algorithm [10] produces a stroke represented as seg-

ments, where each segment is a cubic-Bézier curve. Its purpose in our application

is aesthetic in order to produce a more attractive real-time feedback to the user by

hiding possible noise and creating a smooth curve.

Before entering the testing stage, every raw data stroke is resampled as a polyline

with a fixed number of points to match the resolution of template strokes.

5.2 Transformation

Figure 5.3: (a): The character with each stroke colored differently; (b): The same
character with the begin point and end point of each stroke colored in red and green,
respectively; (c): Vectors that define the orientation of each stroke.

The templates are composed of a set of strokes represented by polylines. We

transform the input stroke to match the template, by applying a translation, rotation

and isotropic scale. The reason for the isotropic scale comes from the fact that we

do not want our transformation to correct any distortions the user made on his

drawing, that would mislead our error analysis.

Since we resampled every input and template stroke to be a polyline with the

same number of equally spaced points we match every point in the template to its

corresponding point in the input. We match, following stroke order on the character

and point order on the stroke: the first point in the first stroke of the template with

the first point in the first stroke of the input, the second point in the first stroke of

the template with the second point in the first stroke of the input, and so on for

every point in every stroke. With this matching, we build a linear system.

However, before we build the matrices, we first need to make sure the stroke

order is correct in the input and that every stroke orientation (point order) is also

16

correct. To start, if the input has a different number of strokes when compared to

its matching template the application identifies this as an error that is immediately

reported to the user and no further analysis of this input is made, as it makes

our matching impossible. If the number of strokes is the same in both input and

template, the method continues by checking the orientation of each stroke. Since

orientation is a feature that plays a key role in Japanese characters, incorrections

are extracted, to be later presented to the user, and corrected in the input data,

by inverting stroke orientation, to allow further analyses. Orientation of a stroke

[Figure 5.3] is assumed to be the orientation of the vector that goes from the first

to the last point of the polyline representing the stroke.

We build a column vector b with every dimension of every point in the template

in order from the first point in the first stroke to the last point in the last stroke, and

a matrix A with every point in the input, following the order in which they match

the values in b. With such, we find the least-square solution with the singular value

decomposition algorithm which gives us the transformation vector x that solves:

Ax = b.

To find a matrix that performs a rigid transformation as well as an isotropic

scale, the system has to be built in a proper way. In order to obtain the isotropic

scale we first normalize all the points in the input and also the points in the template

with the matrix:

N =

s 0 − cx
s

0 s − cy
s

0 0 1


where (cx, cy) is the centroid point and s is a scale so that the mean distance from

the origin (0, 0) is
√

2. Then, we build A and b so that we find:

x =


α cos θ

α sin θ

tx

ty


where α is the scale, θ is the rotation angle and (tx, ty) is the translation vector.

Since we have a column vector b:

17

b =



xt11

yt11

xt12

yt12

...

xtnm

ytnm


where (xtnm, y

t
nm) is the point m in stroke n of the template. We build A to form

the correct system Ax = b:

A =



xi11 yi11 1 0

xi11 yi11 0 1

xi12 yi12 1 0

xi12 yi12 0 1

...

xinm yinm 1 0

xinm yinm 0 1


where (xinm, y

i
nm) is point m in stroke n of the input.

From the least-square solution for the linear matrix system built with our match-

ing we find vector x and build the transformation matrix:

M =

α cos θ −α sin θ tx

α sin θ α cos θ ty

0 0 1


Then, we remove the normalization we did before:

M ′ = N−1t MNi

where N−1t is the inverse of the normalizing matrix for the template points and Ni is

the normalizing matrix for the input points. With M ′ we can transform the points

in input space to template space by applying it to every input point.

18

Chapter 6

Feature analysis

In this section we discuss how the application does the different types of key feature

comparisons.

After transforming the input points into template space we are ready to compare

them. Through a battery of tests we compare key features present in the topology

and context of the Japanese alphabet. These features are: coherence, rotation,

stroke length and stroke intersection properties. In addition, we define a heuristic

to rank the strokes and form a hierarchy to assist our decision making on error

analysis.

6.1 Character coherence

Figure 6.1: Coherence error example

An input-template pair with the same amount of strokes and all their paired

strokes with the same orientation proprieties can still represent two different char-

acters. Without proper handling, characters with more than one stroke might raise

errors on the stroke length or intersection properties (although it is not guaranteed

as some characters may be very similar), but single-stroke ones would slip by the

analyses. This would happen because single-stroke characters will not raise length

errors, as the stroke will always compose 100% of the character, and very few could

19

raise intersection errors, as there is only a small group of characters with strokes

that self-intersect.

To prevent the application from admitting any single stroke representation as a

correct one for a single-stroke character, as well as capturing poor or completely in-

correct drawings of multi-stroke ones, we created what we call a character coherence

test [Figure 6.1].

In order to define character coherence we evaluate the “distance” from the tem-

plate to the input. First, we define the distance between two strokes as:

S =
n∑

i=1

dpiqi

where dpq is the Euclidean distance from point p to point q, and pi and qi are

the corresponding points, where the X th point of the N th stroke in a character is

correspondent to the X th point of the N th stroke in the other character.

Character distance can them be defined as:

C =
k∑

i=1

Si

where Si is the stroke distance calculated for the k strokes of a character.

We compare the template-input distance to a threshold, if it exceeds it, we are

faced with an input that is too far from the template to be considered as the same

character.

When the coherence error is raised it is presented as the only error, since it makes

further analysis impractical.

6.2 Rotation

Figure 6.2: Rotation error example

Any rotation on the input can be fixed with the transformation to the template

character space, but a representation too crooked or even upside down is interpreted

as incorrect and so it needs evaluation [Figure 6.2].

20

The rotation from the template to the input can be extracted from the least-

square solution vector found during the transformation step. From the α cos θ and

α sin θ elements of the vector x (presented in section 5.2) we can extract the angle θ

of the rotation. The angle is compared with a threshold to possibly raise a rotation

error. An animation is shown to explicit the nature of the mistake.

6.3 Stroke length

Figure 6.3: Stroke length error example

Proportion among strokes from the same character represent another important

feature [Figure 6.3]. An out of proportion stroke length impacts the aesthetics and

properties of a character and is usually indication of poor writing.

To evaluate the stroke length we define what we call character total stroke length.

Lsi being the length of stroke i, total stroke length is then defined as:

TSL =
n∑

k=1

Lsk

for a character with n strokes.

We then proceed to calculate, for each stroke, how much does it contribute to

the character total stroke length:

Cs =
Lsi
TSL

We compare Cs for each stroke from the template with its counterpart from the

input and allow the values to differ by a threshold. If the difference is higher than

the threshold a length error is raised.

6.4 Stroke intersection properties

One of the most important features in Japanese character topology are the in-

tersections. The properties of intersections among strokes are sometimes vital to

21

differentiate two distinct characters[Figure 6.4].

(a) Character su (b) Character nu

Figure 6.4: Two very similar katakana characters

Figure 6.5: Non-existing intersection error example

Usually, two types of errors concerning intersections are made when drawing:

Drawing character without an intersection it should have [Figure 6.5] and drawing an

intersection that should not exist [Figure 6.6]. But we use the intersection properties

to capture errors in the relative positioning among strokes as well. A misplacement

of a stroke inside a character is easy to fix, but it is an error that has major relevance

[Figure 6.7], as there are characters with very similar topology and strokes. So we

evaluate where intersections occur on each stroke.

Figure 6.6: Too many intersections error example

The evaluation of intersections can then raise three types of errors: intersections

that exist but are misplaced; intersections that are not drawn; and strokes that

intersect one another more times than they should. For the last two, the opposite

22

Figure 6.7: Misplaced intersection error example

is also considered. To manage the necessary tests, when extracting intersection

data, we pinpoint the intersection location and, for every stroke involved, a value

0 ≤ t ≤ 1, is obtained. t = 0 represents the first point of the polyline and t = 1

represents the last point of the polyline.

By checking for the existence of intersections on both the template and the input,

extra intersections the input may have, and the difference on all pair values of t

against a threshold we are able to raise all possible errors concerning the intersection

properties of a character.

When evaluating the presence of an intersection, we understand that it is possible

to draw strokes very close to one another, meaning for them to intersect, but not

actually connecting both [Figure 6.8], which is a nuisance for the user as distances

of a few pixels are usually hard to spot on drawings. Thus, our algorithm checks

for pairs of strokes that have points with an euclidean distance lower than a certain

threshold, and maps them as existing intersections.

Figure 6.8: Two strokes that come very close, but never actually intersect.

6.5 Hierarchy

Multiple length errors are sometimes not an accurate feedback. Error in length may

present itself as multiple entries in error log as characters have no size restrictions.

23

Sometimes it’s not possible to say if stroke x is too small or stroke y is too big, in

which case our system would raise length errors for both stroke x and y. This same

concept can be applied to stroke intersections. We designed a solution to choose the

errors we present in these situations, not only to avoid this ambiguity but also to

not overwhelm the user by showing too many errors.

As our method is proposed as a learning tool, it is necessary to evaluate what

is the best possible feedback we can give the user. Multiple error entries related to

the same error can generated confusion and redundancy, as they are usually only

different points of view of the same error. The avoidance of aggressive error logs

and related misconceptions is to refrain the feeling of a very negative feedback from

the user, as we try to conduct the learning process as a gradual and satisfying

experience.

By developing a concept of hierarchy among the strokes of a character, we try to

find which stroke that, when fixed, has the most positive return on the character,

i.e., the one that decreases the distance between the input and template the most.

A multi-stroke character need to be evaluated as a whole, not only the strokes that

represent it, but also their relationship (their intersections and length proportion).

But, if we evaluate its individual strokes separately [Figure 6.9], a representation

can be compromised by a poor drawing of a single stroke. We created a heuristic

based on the length and intersection features. We calculate a score for each stroke

and then rank them accordingly.

Suppose that T i and I i are characters composed only of stroke i of the template

and input, respectively. I i is then transformed into T i space. With C(i) being the

character distance (defined in section 6.1) between T i and the transformed I i. We

find:

x1 = arg min
i

[C(i)]

where x1 is the stroke that alone has the best match with its correspondent.

We then create T x1,i and Ix1,i which are characters composed only of strokes x1

and i of the template and input, respectively. Then Ix1,i is transformed into T x1,i

space. With C(i) being the character distance between T x1,i and the transformed

Ix1,i, we find which stroke fulfills the equation:

x2 = arg min
i

[C(i)], i 6= x1

where x2 is the stroke that when together with x1 has the best match with its

corresponding pair.

We continue the process by adding the stroke that belongs to the minimum

character distance and repeating the above step until we build the entire character

24

again. We then will have the hierarchy: x1, x2, ..., xn. This process is represented in

Figure 6.10.

Using this hierarchy, when multiple errors in length or intersection are raised,

the user will only be presented with the ones concerning the highest ranked stroke

[Figure 6.11].

6.6 Examples

Following are some examples of the results of our method [Figures 6.12 , 6.13].

25

(a) The two characters being compared

(b) The stroke, compared with its correspon-
dent is very similar

(c) When we add another stroke, a little dif-
ference is noted

(d) A third stroke is added, but both char-
acters are still very similar

(e) The full character has more notable dif-
ferences

Figure 6.9: Hierarchy example

26

(a) The two characters

(b) Analyzing each character to find the one with the minimum character distance(in the
red square)

(c) We now use two strokes, with one always being the one from the last step

(d) A third stroke is added, in this case the character is complete so the hierarchy has
been calculated.

Figure 6.10: Hierarchy calculation example

27

Figure 6.11: In this example both lengths, represented by the percentages, are out
of the threshold and 2 errors would be raised, but using the hierarchy we will show
only one. Clearly, fixing one would fix the other in this case.

28

(a) Template (b) Input

(c) Error message

(d) Example 1

(e) Template (f) Input

(g) Error message

(h) Example 2

(i) Template (j) Input

(k) Error message

(l) Example 3

(m) Template (n) Input

(o) Error message

(p) Example 4

Figure 6.12: Result demonstration

29

(a) Template (b) Input

(c) Error message

(d) Example 5

(e) Template (f) Input

(g) Error message

(h) Example 6

(i) Template (j) Input

(k) Error message

(l) Example 7

Figure 6.13: Result demonstration 2

30

Chapter 7

Implementation

Figure 7.1: Application interface

Our tool [Figure 7.1] is available as a web application implemented with html5

and Javascript along with a Python back-end server.

On the front page a html5 2D canvas implemented with the aid of Javascript is

presented to the user. After choosing a character from the dropdown menu, he is

able to freely draw with the mouse, a touchpad or trackpad. To assist him, buttons

that allow undoing the last stroke and clearing the canvas are present. All input

is treated with the Efficient Curve Fitting algorithm (presented in section 5.1) in

real-time to give the user the perception of a smooth drawing.

When done drawing, the user submits it, sending the data to the server. The

server does the analyses and redirects the user to a page where interactive feedback

is displayed.

Feedback is presented as an interactive menu, listing the errors raised or a mes-

31

sage informing that no errors were found. Upon clicking on any of the error messages

animations are shown to guide the user on what corrections need to be made on his

drawing.

7.1 Template Creation

In the same fashion to the user drawing input, a interface to capture template

drawings was made. A 2D canvas is used to draw and a name is chosen for the

template. The templates were named according to the character it represents. After

drawing, the input data is submitted to the server, that stores the information on

a file. Each template has its own file, that contains all the points that make up

the strokes, the points that make up its Efficient Curve Fitting representation (only

used when the character is shown to the user), as well as length and intersection

information, to avoid the need of calculating them at runtime. An example of a

template and its file contents in shown on Figure 7.2.

Figure 7.2: On the left: The template for the character ma. On the right: The
contents of the file of this template on the server.

32

Chapter 8

Results and Discussion

We made our platform available for users to experiment with and give feedback on

their experience. All tests listed here were made with the thresholds shown on the

Table A.1.

For our tests, we made a database containing all of the Katakana characters.

To better analyze the results, we categorized our users into groups, according to

their knowledge level of the Katakana character. We decided to evaluate the user

feedback using the disposition of users in these groups as we believe users under

different groups can evaluate our approach from various perspectives, as they would

benefit in different ways from our solution [Table 8.1]. Users were also asked what

kind of input device they used for the tests [Table 8.2].

We had 16 users test the application. They were given a test script and access

to the application and were asked to evaluate their experience under these aspects:

Interface, feedback (from the system) and utility.

I have a lot of experience with the Japanese language. 0%
I have full knowledge of the Katakana, but I’m still
studying/have not completed the studies of the Japanese
language.

19%

I know the Katakana, but I am currently learning/have
not fully learned it.

13%

I have some contact with the Japanese language, but
never studied it.

13%

I have no knowledge of the Japanese language. 56%

Table 8.1: Knowledge of the Japanese language

8.1 Interface

We asked the users to qualify the interface [Table 8.3]. Since we propose a learning

tool, we find necessary that it has an accessible, intuitive and easy to use interface.

33

Mouse 50%
Graphics tablet 44%
Touch interface 0%
Other 6%

Table 8.2: Input device used

Very satisfying. 37%
Good, minor changes could be make it better. 44%
Average, missing some options. 19%
Poor, a lot of changes have to be made. 0%
Awful, It ruined my experience with the application. 0%

Table 8.3: Interface results

To evaluate such interface features users ranked them, and were also asked if they

would make any changes.

8.2 Feedback

Great. Spot on and easy to understand. 44%
Good, but the animation and text could use a little im-
provement.

50%

Average, found it hard to understand sometimes. 6%
Poor. I struggled to understand what it meant. 0%
Not helpful at all. 0%

Table 8.4: Feedback results

We asked the users to give their opinion on the feedback the system gives them

on their errors [Tables 8.4 and 8.5]. They were asked if they thought the feedback

is clear, helpful and, most importantly, if the changes they needed to make to fix

their drawings were sufficient for them to go back and try again.

8.3 Utility

We asked the users if they believe they are able to learn and improve their hand-

writing through the use of this platform [Table 8.6].

34

Perfect.
The an-
imation
made the
errors
obvious.

Good.
Need a few
changes
but sat-
isfying
overall.

Bad. It
should be
redone.

I never saw
this type of
feedback.

Number of strokes 75% 13% 0% 13%
Stroke orientation 75% 13% 0% 13%
Stroke coherence 19% 6% 0% 75%
Stroke length 19% 63% 19% 0%
Non-existing stroke inter-
section

19% 6% 13% 63%

Stroke intersection count 13% 13% 19% 56%
Misplaced stroke intersec-
tion

13% 44% 31% 13%

Table 8.5: Specific feedback results

Yes, It’s a great tool for those learning it. 44%
Yes, but needs some improvements. 56%
No, I would not recommend it. 0%

Table 8.6: Utility results

35

Chapter 9

Conclusion

We presented, in this work, a Japanese character handwriting analyzer application.

Our application compares geometric and topology features from a template with the

user input to generate feedback of his drawing.

We proposed a method to evaluate handwriting through stroke properties. Our

application is able to identify the most common and also the most serious mistakes

made in Japanese character representation. Our work is presented as an educational

tool for learning the written language, and provides a simple and easy to use interface

and punctual feedback over the mistakes made in the users drawing. Our work

also reduces the input noise through resampling and provides the users with better

aesthetics with the implementation of the Efficient Curve Fitting algorithm.

The user feedback confirms the potential of our application, but also reveals

some necessary changes to make it more accessible and a more efficient tool. As the

target users of our application are those having little knowledge, we need to have a

more clear feedback in some features critics, such as length and intersection errors,

that did not fully please the majority of our test subjects.

The freedom provided by sketch-based drawing interfaces imply on difficulties in

the analyses. Restraining such freedom would hurt the user experience and quality

of the application, as our approach is to analyze hand drawings, so the capability to

handle translations, scaling, rotations and distortions, not to mention the relation-

ships between different parts of the drawing, is an essential part of our method.

When a person draws the characters frequently it is common to create some slight

variations that adapt the character representation more to his style of handwriting,

and thus creating some minor differences in representation that are not wrong by any

means. As the method is now, some variations in the representation of a character

are not well received by the application, and relaxing some of the thresholds used

might make it so. However, our method is designed for those learning the language,

so restricting the representations to their most formal shape is not a negative point.

Through the feedback the users gave us, we confirmed the potential of our plat-

36

form as an educational tool that, given some minor changes, most specially in feed-

back representation of some features, can be a very useful tool for people learning

the written language.

37

Chapter 10

Future Work

We would like to extend our testing database to the Kanji characters to explore

the behavior of our platform with the higher complexity nature of those characters.

Running an educational application on a web service environment does contribute

to value our work as it greatly increase its accessibility. That being said, the high

complexity Kanji characters, that can go up 29+ strokes in the more commonly

used ones, and 60+ in some rare ones, would increase the computations made. In

addition, there is room for improvement in our model, specially in how we handle the

transformation from input to template space, as we need n! combinations, where n is

the number of strokes, to check all possibilities regarding the order of the strokes, and

also in its scalability. Another issue, in the computational point of view, would be

the cost to build the hierarchy of character with this many strokes, as our algorithm

has a complexity of O(n2), where n is the number of strokes in the character.

We also believe that the user experience with our software can be improved by

loosing the restriction on the intersection and length threshold, and also improving

the feedback for the length and misplaced intersection features. We believe that

these changes will reflect on even more positive user feedback.

Taking inspiration on some of the related work previously mentioned, another

possibility could be making a interface for users, say a teacher, to create templates

of characters proposed as homework and on another interface the students could

draw the character given by the teacher, maybe even submit it as an assignment.

On this scenario, no changes would need to be made on our method, only on its

interface.

38

Bibliography

[1] FORBUS, K. D., USHER, J. M. “Sketching for knowledge capture: a progress

report”. In: IUI’02, pp. 71–77, 2002.

[2] FORBUS, K. D., LOCKWOOD, K., KLENK, M., et al. “Open-domain sketch

understanding: The nuSketch approach”. In: AAAI’04, pp. 58–63, 2004.

[3] FORBUS, K. D., USHER, J. M., LOVETT, A., et al. “CogSketch: Open-domain

Sketch Understanding for Cognitive Science Research and for Education”.

In: SBM’08, pp. 159–166, 2008.

[4] FIELD, M., VALENTINE, S., LINSEY, J., et al. “Sketch Recognition Algo-

rithms for Comparing Complex and Unpredictable Shapes”. In: IJCAI’11,

pp. 2436–2441, 2011.

[5] EITZ, M., HAYS, J., ALEXA, M. “How Do Humans Sketch Objects?” ACM

Trans. Graph. (Proc. SIGGRAPH), v. 31, n. 4, pp. 44:1–44:10, 2012.

[6] WOBBROCK, J. O., WILSON, A. D., LI, Y. “Gestures without libraries, toolk-

its or training: a $1 recognizer for user interface prototypes”. In: UIST’07,

pp. 159–168, 2007.

[7] OLSEN, L., SAMAVATI, F. F., SOUZA, M. C. “Fast stroke matching by angle

quantization”. In: ImmersCom’07, p. article 4, 2007.

[8] HEROLD, J., STAHOVICH, T. F. “The One Cent Recognizer: A Fast, Accurate,

and Easy-to-Implement Handwritten Gesture Recognition Technique”. In:

SBM’12, pp. 39–46, 2012.

[9] OTA, I., YAMAMOTO, R., SAKO, S., et al. “Online Handwritten Kanji Recog-

nition Based on Inter-stroke Grammar”, Document Analysis and Recog-

nition, 2007. ICDAR 2007. Ninth International Conference on, v. 2,

pp. 1188–1192, 2007.

[10] FRISKEN, S. “Efficient Curve Fitting”. In: Journal of Graphics Tools, pp.

35–54, 2008.

39

Appendix A

Thresholds

Threshold type Value
Polyline point quantity 128
Character distance 3000 * (number of strokes) pixels
Rotation angle π/8 radians
Stroke length 5%
t 0.05
Intersection proximity 14 pixels

Table A.1: Application thresholds

40

	List of Figures
	List of Tables
	Introduction
	Related work
	Japanese Written Language
	Hiragana
	Katakana
	Kanji

	Character Recognition
	Input processing
	Drawing
	Transformation

	Feature analysis
	Character coherence
	Rotation
	Stroke length
	Stroke intersection properties
	Hierarchy
	Examples

	Implementation
	Template Creation

	Results and Discussion
	Interface
	Feedback
	Utility

	Conclusion
	Future Work
	Bibliography
	Thresholds

