
USING WEIGHTED VERTEX COLLECTIONS FOR COMPUTING MAP

OVERLAY OPERATIONS

José Augusto Sapienza Ramos

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Claudio Esperança

Rio de Janeiro

Junho de 2014

USING WEIGHTED VERTEX COLLECTIONS FOR COMPUTING MAP

OVERLAY OPERATIONS

José Augusto Sapienza Ramos

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Claudio Esperança, Ph.D.

Prof. Ricardo Guerra Marroquim, D.Sc.

Profa. Julia Celia Mercedes Strauch, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JUNHO DE 2014

Sapienza Ramos, José Augusto

Using Weighted Vertex Collections for Computing Map

Overlay Operations/José Augusto Sapienza Ramos. – Rio

de Janeiro: UFRJ/COPPE, 2014.

XII, 68 p.: il.; 29, 7cm.

Orientador: Claudio Esperança

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2014.

Bibliography: p. 65 – 68.

1. Map Overlay. 2. Spatial Database. 3. Spatial

Queries. I. Esperança, Claudio. II. Universidade Federal

do Rio de Janeiro, COPPE, Programa de Engenharia de

Sistemas e Computação. III. T́ıtulo.

iii

Dedico à ciência e ao amor, sem

os quais minha vida teria menos

valor.

iv

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

USING WEIGHTED VERTEX COLLECTIONS FOR COMPUTING MAP

OVERLAY OPERATIONS

José Augusto Sapienza Ramos

Junho/2014

Orientador: Claudio Esperança

Programa: Engenharia de Sistemas e Computação

Essa dissertação investiga a nova proposta chamada Coleção de Vértices Ponder-

ados ou Weighted Vertex Collection (WVC) para executar sobre dados espaciais de

duas dimensões operações de Map Overlay (sobreposição de mapas), que é um tipo

de junção espacial. São descritas estruturas de dados e algoritmos baseados no con-

ceito de campo escalar e no paradigma de plano de varredura. Uma implementação

é apresentada como prova de conceito, onde os resultados demonstram um tempo

de processamento competitivo frente a principais softwares de GIS (Sistemas de In-

formações Geográficas) do mercado: ArcGIS for Desktop e QGIS. É esperado que

com algum avanço, o WVC se apresente uma interessante proposta para processar

Map Overlay sobre Spatial Big Data, dados não indexados ou em outros cenários

onde novos estudos indiquem potencialidades.

v

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

USING WEIGHTED VERTEX COLLECTIONS FOR COMPUTING MAP

OVERLAY OPERATIONS

José Augusto Sapienza Ramos

June/2014

Advisor: Claudio Esperança

Department: Systems Engineering and Computer Science

This dissertation investigates the new proposal called Weighted Vertex Collec-

tion (WVC) to perform Map Overlay operations - a type of spatial join - on two-

dimensional spatial data, there are described data structures and algorithms based

scalar field concept and plane sweep paradigm. An implementation as proof of

concept is presented, where the results demonstrate a competitive processing time

compared with mainstream GIS (Geographic Information System) software: ArcGIS

for Desktop and QGIS. It is expected that with some advance the WVC becomes an

interesting alternative to processing of Map Overlay with Big Spatial Data, unin-

dexed data or other scenarios where new studies indicate potentialities.

vi

Contents

List of Figures viii

List of Tables xi

1 Introduction 2

2 Spatial Joins 5

2.1 Spatial join processing strategies . 7

2.2 Map Overlay . 9

3 Weighted Vertex Collections 11

3.1 Weighted Vertex . 11

3.2 Properties and operations on Weighted Vertex Collections 15

3.3 Scan . 16

3.3.1 Scan order . 18

3.3.2 Event processing . 18

3.4 Operations . 28

3.4.1 Sum . 28

3.4.2 Value At . 28

3.4.3 Draw . 31

3.4.4 Convert . 31

3.4.5 Scalar Transformation . 32

3.5 The WVC data structure . 34

4 Implementation, Tests and Results 57

4.1 Comments about processing the Map Overlay operations with WVCs 59

4.2 Discussion of results . 62

5 Conclusion 64

Bibliography 65

vii

List of Figures

2.1 Example of a simple spatial query: (a) performing rectangular zoom

on a plane partition; and (b) selecting the subset of polygons - filled

with dark gray - that must be shown in the window. 6

2.2 Some spatial relationships between polygons. Adapted from [18]. . . . 6

2.3 Perfoming a spatial join operation with predicate “contains” between

two relations, where the query return is marked with white dots in (b). 6

2.4 (a) Example of a two-step architecture to efficiently process spatial

queries: filtering with spatial index (SI) and refinement with exact

geometry; (b) the architeture in three steps adds simplified geometries

as second filter and to compose part of the response set. The second

architeture is more usual in mainstream databases. Adapted from [16]. 8

3.1 The 2D points are mapped in (a) continuous and (b) discrete scalar

values, where the discrete values in (b) represent a planar subdivision. 12

3.2 The weighted vertex v1 with w(v1) = +w and θ(v1) = θ1 generates a

cone that perturbs the scalar field with weight +w. 12

3.3 (a) The weighted vertex v1 generates a cone +w with slope θ; (b)

another vertex v2 with the same slope generates a new cone −w which

limits the region mapped to w; (c) (d) v3 and v4 are added with θ = 0

to determine all sides of the region. 13

3.4 Vertex Representation example: (a) vertex v1 is added generating a

cone; (b) v2 is added and limits the first cone; (c) the orthogonal

object with weight w is defined by six vertices. 14

3.5 Weighted Edge Collection, (a) edge e1 is added generating an infinite

trapezoid; (b) e2 is added defining the top edge of the trapezoid. . . . 14

viii

3.6 Illustrating the relationship between scanlines and cones: (a) vertex

v1 with weight w(v1) = +w generates a cone crossed by a scanline

L(y); (b) to determine the scalar values S(pi) at points pi,∀pi ∈ L(y),

we need to record the changes above L(y); and (c) changes occur when

L(y) crosses the cone rays – these are called stop events in the plane

sweep paradigm. The ray that crosses L(y) at a smaller x coordinate

generates a change of +w(v1) along the scanline, while the other ray

introduces a change of −w(v1). 17

3.7 Step by step scan of an isosceles triangle - part 1 of 5. 23

3.8 Step by step scan of an isosceles triangle - part 2 of 5. 24

3.9 Step by step scan of an isosceles triangle - part 3 of 5. 25

3.10 Step by step scan of an isosceles triangle - part 4 of 5. 26

3.11 Step by step scan of an isosceles triangle - part 5 of 5. 27

3.12 Example of Value At operation with two points. Details about the

scan update at each y can be seen in Figures 3.7 through 3.11 30

3.13 Example of trapezoidal decomposition, where the white trapezoids

have w = 0 and gray trapezoids have w = +w. 32

3.14 Some basic functions to Scalar Transformation. 33

3.15 A scalar field S to be transformed. The white area values 0, darkest

area values +2 and otherwise +1. 37

3.16 Example in step by step of Scalar Transformation - part 1 of 18. . . . 38

3.17 Example in step by step of Scalar Transformation - part 2 of 18. . . . 39

3.18 Example in step by step of Scalar Transformation - part 3 of 18. . . . 40

3.19 Example in step by step of Scalar Transformation - part 4 of 18. . . . 41

3.20 Example in step by step of Scalar Transformation - part 5 of 18. . . . 42

3.21 Example in step by step of Scalar Transformation - part 6 of 18. . . . 43

3.22 Example in step by step of Scalar Transformation - part 7 of 18. . . . 44

3.23 Example in step by step of Scalar Transformation - part 8 of 18. . . . 45

3.24 Example in step by step of Scalar Transformation - part 9 of 18. . . . 46

3.25 Example in step by step of Scalar Transformation - part 10 of 18. . . 47

3.26 Example in step by step of Scalar Transformation - part 11 of 18. . . 48

3.27 Example in step by step of Scalar Transformation - part 12 of 18. . . 49

3.28 Example in step by step of Scalar Transformation - part 13 of 18. . . 50

3.29 Example in step by step of Scalar Transformation - part 14 of 18. . . 51

3.30 Example in step by step of Scalar Transformation - part 15 of 18. . . 52

3.31 Example in step by step of Scalar Transformation - part 16 of 18. . . 53

3.32 Example in step by step of Scalar Transformation - part 17 of 18. . . 54

3.33 Example in step by step of Scalar Transformation - part 18 of 18. . . 55

ix

3.34 The result of Scalar Transformation that perform a intersect opera-

tion applying the function f∩ described above. 56

4.1 Overview of dataset geometries with black and gray outlines. 61

x

List of Tables

4.1 Characteristics of datasets used in the experiments. Poly is the num-

ber of polygons, Vertices is the total number of polygon vertices, Ipoly,

Ipoint and Iline are the number of 2D, 1D and 0D geometries returned

in a intersection operation between data. 58

4.2 Executions time in seconds with WVC, ArcGIS for Desktop and QGIS. 59

4.3 The sizes of converted (WV Cin) and transformed (WV Cout) Weighted

Vertex Collections ; ||L(y)|| average size scanline onto stop events;

and numbers of vertices in Shapefiles before (||SHPin||) and after

(||SHPout||) Map Overlay operations in GIS software. 62

xi

List of Algorithms

3.1 prepareScan - creates the initial structures to Scan process 19

3.2 scan - scan next point p . 19

3.3 processEvents - process events to update L(y) 21

3.4 insertRay - insert ray in scanline . 22

3.5 testInter - test scanline rays for intersection 22

3.6 sum – add two scalar fields represented by two WVC 28

3.7 valueAt – calculates the scalar values at a set of points 29

3.8 computeV alueAt – calculates the scalar value at one point on a scanline 29

3.9 scalarTransf - perform the operation of scalar transformation 35

3.10 getNextRay - get the next ray to be checked 36

3.11 valueAtRay - get the value of scalar field given a ray 36

xii

Acknowledgments

First, I wish to thank God who guides us on the path of knowledge. I also want to

thank my parents Iracema Sapienza and Antonio Ribeiro Ramos who have created

the person I am, likewise I thank my orientator and master Claudio Esperança for

your help, patience and for being the role model of a researcher I seek to be. With

great affection, I also thank my fiancee Camila Moraes Ribeiro, my uncle Paulo

Ramos, mu cousin Eduardo Melo and my whole family, who always supported my

studies. I would like to give acknowledgment to every teacher, every professional

and every person who gave me a piece of knowledge to compose the professional,

researcher and citizen that I am. Lastly, I thank the friends, who made many

moments in my life sublime.

1

Chapter 1

Introduction

In recent years, technologies that work with digital maps have grown in importance.

It is noticeable the rapid rate in which new tools, applications and techniques have

been developped in recent years. In particular, we may point out the ever-increasing

amount of data acquired by remote sensing – both airborne and with the help of

artificial satellites including the recent use of unmanned aerial vehicles (UAV) – and

by topographic surveys using laser scanners, the rise of new proprietary software

and free Geographic Information Systems (GIS) software. In Brazil, it is worth

mentioning the renewed efforts dedicated to the systematic cartographic mapping,

the beginning of the Spatial Data Infrastructure (SDI) initiative (Infraestrutura

Nacional de Dados Espaciais in Portuguese). Also important is the popularization of

Global Navigation Satellite Systems (GNSS) such as the American NAVSTAR/GPS

and the Russian GLONASS, as well as the advent of interactive maps in websites

(GISWeb), among many other examples.

As a result, we are witnessing an enormous increase in the volume of geographic

data. Geographic data can be divided into three components [1, 2], namely: where,

what e when. Another notation applied to these components is <X;A;T>. The

component where or X refers to the geographic location of an object or phenomenon,

together with a scaled cartographic representation within a geographic or projected

coordinate system. The component what or A is a non-empty set of attributes that

describes a georeferenced object or phenomenon, where usually these attributes are

structured in tabular form. Lastly, the component when or T is the time reference

where the other two components were measured.

According to [1], in the past two decades the database became the core compo-

nent of information systems from the point of view of project and also of operation.

Therefore, when an organization collects a set of spatial data and needs to manage

it in a computationally efficient manner, it is necessary to use geographic databases.

Apart from the geographic database storing the components <X;A;T>, the Spatial

Database Management System (Spatial DBMS) must be able to retrieve and process

2

these components [2]. For example, a Spatial DBMS must be able to answer spatial

queries such as: “What are the hospitals contained in the district of Vila Isabel?” or

“What are the environmental areas that are within 2 km of the pipelines?”. These

queries return geometries and their attributes.

Spatial database technologies bring new challenges, which become targets for

research in the academic field of computing. Casanova et al. [1] compile proposals

to store the component X of geographical data in a database within the relational

paradigm. Orenstein [3] describes several techniques for using spatial indexes to

perform a filter step in spatial queries, while other works [4, 5] discuss efficient

structures for progressive transmission of vector spatial data in the Web. As other

examples of important works in the field, we may mention the discussion of redun-

dancy checking in spatial queries [6], cache structures [7] and studies and evaluations

for efficient spatial join operations discussed in [8] and compiled in [9].

Increasingly, geographically based solutions generate datasets with a size, com-

plexity and update rate that exceeds the capacity of today’s computing technologies

[10]. Concepts, proposals and implementations involving large geographic database

structures are explored as Spatial Data Infrastructures (see a discussion in [11]) and

Spatial Big Data, where the challenges were listed in [10, 12]. Aside from that,

papers such as [13] examine GIS requirements in mobile devices with hardware con-

straints.

In spatial databases two essential classes of operations are required: spatial selec-

tion queries and spatial joins. According to [14], the spatial selection query returns

a subset of relation tuples using a spatial predicate, such as a window operation, for

instance, that aim to determine what geographic features must be shown at a zoom

into map. On the other hand, the spatial join is a spatial query which performs a

comparison between two database relations - a database cartesian product - accord-

ing to relationships between their geographic objects, and a predicate, returning

attributes and geometries of the relations or even new geometric results obtained,

say by operations like intersection, union, buffer, among others. Queries like “What

are the hospitals contained in the district of Vila Isabel?” or “Intersect oil pipelines

and municipalities boundaries.” are examples of spatial joins.

One kind of spatial join operation is the Map Overlay. A Map Overlay combines

two or more maps of different themes into a single new map [15], where the objective

is process spatial relationships between the input maps, usually involving complex

conditions. Commonly this operation type is performed on spatial data represented

by polygons. Many works such as [12, 15–17] have focused on proposals that can

lead to efficient processing of Map Overlay operations.

The objective of this work is to investigate a new proposal to perform Map

Overlay operations on two-dimensional spatial data. In particular, it describes data

3

structures and algorithms based on scalar fields and the plane sweep paradigm.

Lastly, an implementation of this proposal has been built and used as a proof of

concept, i.e., experiments were conducted where this implementation is compared

with mainstream GIS software in the computation of several map overlay operations.

4

Chapter 2

Spatial Joins

Geographic information systems (GIS) commonly allow queries to be posed by users

and analysts. In addition to run-of-the-mill queries supported by other kinds of

information systems, a GIS must support spatial queries. For example, in a desktop

or web system, interactive navigation of maps require display operations like zoom

or pan, which generate a spatial query to determine which features are visible in a

given window. See a simple example in Figure 2.1.

Camara [18] lists and defines, within the field of conceptual modeling of geo-

graphic databases, what are the possible spatial relationships between classes of

georeferenced information. Figure 2.2 illustrates some spatial predicates that a GIS

should support in spatial join operations using polygonal geometries. Algorithms

to evaluate predicates and other spatial operations on polygons have been intensely

investigated within the field of Computational Geometry.

An example of a spatial join query is shown in Figure 2.3, namely, what are the

points of relation A that are contained in polygons of relation B? According to [1],

to compute a spatial join is more complex than the computation of a non-spatial

join - the inherent characteristics of spatial predicates affect traditional strategies

to compute joins, thus making the execution inefficient. To compute such opera-

tions efficiently it is necessary to consider mainly: (1) the query plan that defines

the order for performing joins, selections and others query operations [8]; (2) the

processing effort of geometric algorithms - uses of filter steps, for instance; and (3)

the computational constraints in scenarios such as Spatial Big Data, mobile devices

or Web.

A major component of all management system database is the query processor

[1, 19], that receives a query Q with a set of operations as joins, selects and projects

and prepares a execution plan P (Q) - also called query plan. This plan is a or-

dered set of steps to compute the result of Q, where is built by an optimizer that

incorporates heuristics to limit the search space mainly at the most costly opera-

tion - like cartesian product in spatial join. For this, the query processor computes

5

(a) (b)

Figure 2.1: Example of a simple spatial query: (a) performing rectangular zoom on
a plane partition; and (b) selecting the subset of polygons - filled with dark gray -
that must be shown in the window.

Figure 2.2: Some spatial relationships between polygons. Adapted from [18].

(a) (b)

Figure 2.3: Perfoming a spatial join operation with predicate “contains” between
two relations, where the query return is marked with white dots in (b).

6

informations as metadata of relations and statistics of previous queries performed.

In order to exemplify, let us consider the following query Q1: select streams that

cross road BR-101. Let S and R be the database relations containing streams and

roads, respectively; A on× B be the spatial join that returns the join of attributes of

A and B when geometries of A cross geometries of B; σbr101(A) be the selection that

returns tuples of A where NAME=’BR-101’, and ||A|| be the number of tuples in

A. Then, the query optimizer, could build two plans: P1(Q1) = σbr101(R on× S) and

P2(Q1) = S on× σbr101(R). If ||R|| � ||σbr101(R)|| or, in other words, the selectivity

of σbr101(R) is relatively high, then P2(Q1) is more efficient that P1(Q1), since the

most costly operation on× is performed with fewer pairs of tuples. Otherwise the

efficiency of P1(Q1) and P2(Q1) are equivalent.

In addition to a good query plan, to process the query operations it is necessary to

use appropriate data structures and algorithms to perform the spatial join operation

itself in an efficient way.

2.1 Spatial join processing strategies

The processing of spatial joins is similar in nature with that of other join types.

The major difference lies in that operations on spatial attributes can require an

inordinate amount of effort, depending on their complexity. For this reason, special

processing strategies have been proposed for spatial data [3, 8, 9, 17, 20].

The most widely adopted strategy for dealing with spatial joins is known as

the filter-and-refine strategy. It encompasses at least two steps: the filtering step

quickly discards some pairs of the cartesian product that do not satisfy the spatial

predicate, while the remaining candidate pairs are processed by the refinement step

to construct the final response set - see Figure 2.4.a.

The filtering step is usually implemented by a spatial index such as a Quadtree,

an R-Tree and their variants - see [21] for a survey of these structures. There are

proposals with more than two steps, where the filtering step is subdivided to identify

more ocurrencies of false hits prior to processing the exact geometry, including com-

parisons between simplified geometries such as Minimum Bounding Boxes (MBB).

For instance, Kriegel, Brinkhoff and others [16, 19] use spatial indices and MBBs

in the filtering step - see Figure 2.4.b - while [20] alternatively uses rasterization

techniques. In [1] some strategies for processing spatial joins using two or three

steps are exemplified in detail.

The refinement step performs the predicate evaluation on exact geometries. Of

particular interest are the algorithms for processing regions, typically represented

by polygons. Most algorithms assume polygons encoded as circulations of vertices

[8, 12, 22] while others use other encodings that can be handled using the plane

7

(a) (b)

Figure 2.4: (a) Example of a two-step architecture to efficiently process spatial
queries: filtering with spatial index (SI) and refinement with exact geometry; (b)
the architeture in three steps adds simplified geometries as second filter and to com-
pose part of the response set. The second architeture is more usual in mainstream
databases. Adapted from [16].

8

sweep paradigm [8, 9, 15, 22]. This second group is more used when there is no

filtering stage.

The filtering step requires the use of spatial indexes, simplified geometries or

other specific data structures. In some cases - like when building temporary query

results with new geometries, or when the filtering step identifies few false hits -

the building or maintainance of these structures become more costly than working

directly with the exact geometry in the refinement step. Thus, the query processor

must consider whether or not to use filters when building spatial join query plans.

As an illustration, let us examine an example query Q2 - select streams that cross

the stretch of BR-101 road that intersects the Rio de Janeiro district. Let S, R and

D be the database relations containing stream, road and district data, respectively;

A on× B be the spatial join that returns the join of attributes of relations A and

B when geometries of A cross geometries of B; A on∩ B be the spatial join that

returns non-empty geometries A∩B with the intersection of attributes of A and B;

and σbr101(A) and σrj(A) respectively as the selections that return tuples of A where

NAME=’BR-101’ and where NAME=’Rio de Janeiro’. Then, the query processor

may build a plan P (Q2) = S on× (σbr101(R) on∩ σrj(D)) to compute Q. Assuming

that: (a) the query processor applies a filtering step using R*-Tree [23] as a spatial

index (which is common in mainstream spatial databases); (b) MBBs are applied as

a second and geometric filter; and (c) the data structures of the R*-Tree and MBBs

have already been built for the database relations, then performing P (Q2) may

require that a new R*-Tree and MBB set be built for the new geometries generated

in on∩. Besides, if the selectivity of σbr101(R) is high, then the R*-Tree for R may be

updated to the result of σbr101(R) operation, lest the efficiency of the R*-Tree data

structure be compromised.

Spatial joins also play an important role in spatial database modeling. For

instance, it is common to store spatial relationships as foreign keys, say, when one

wants to link cities to the county they belong to. Thus, a database trigger may be

defined for changes in the county borders, so as to update the foreign key link from

cities to counties by means of a spatial join.

2.2 Map Overlay

In Geographic Information Systems, the Map Overlay is a crucial operation, since

it is responsible for answering questions such as (a) “Where have the vegetation

classes changed in the last two years?” (b) “What are the areas of human occupation

within the boundaries of protected areas?”; (c) “Overlay slope, land use, vegetation,

geology, soil and other layers to generate a map of erosion susceptibility using Fuzzy

Logic”. Operations such as intersection, union, clip, dissolve, buffer and other simple

9

geometric operations are usually called “Geoprocessing Tools” in mainstream GIS

software. However, other advanced GIS operations such as raster calculations - also

called raster overlay - are also considered Map Overlay operations.

The most commonly applied algorithms in Map Overlay process polygonal re-

gions represented as circulations of vertices. These algorithms typically evaluate

each pair of polygons in order to find boundary crossings. Therefore, the complex-

ity of these algorithms is related to the amount of vertices. When performing a Map

Overlay between many sets of regions, such as the fuzzy logic example mentioned

above, we may have to deal with a lot of overlap between the regions. In other

words, a set of regions resulting from R1∩R2∩R3∩ ...∩Rn may be produced where

the amount of crossing tests may not be significantly reduced by the filtering step.

For these reasons, it is not uncommon a conversion of polygons to a matricial

representation in order to increase processing performance. Once the data is stored

in matrices, the operation is performed on the overlapping cells. An alternative in

this scenario is to work with the plane sweep paradigm, where a two-dimensional

problem is solved by breaking it up into several one-dimensional subproblems.

10

Chapter 3

Weighted Vertex Collections

In this chapter we discuss a data structure named Weighted Vertex Collection which

will be used to solve the Map Overlay problem. The following sections describe the

main aspects of the structure, basic operations and algorithms.

3.1 Weighted Vertex

The proposed data structure structure represents bidimensional discrete scalar fields

bounded by polygonal lines, i.e., functions that map R2 onto Z where regions that

are mapped to the same value are delimited by straight line segments (see Figure

3.1). In essence, the structure is a collection of elements called weighted vertices.

Each weighted vertex is defined by a position, i.e., a point with coordinates (x, y),

a weight w and an angle θ. A weighted vertex adds w to the scalar field for points

inside its area of influence – also termed cone – which is an infinite sector spanned

by two rays intersecting at the vertex position: the first is a vertical ray and the

second makes an angle of θ with the x axis (see Figure 3.2).

In order to illustrate the concept, let us model a scalar field called S by means

of a collection of weighted vertices C. Initially, the scalar field is null, i.e., all points

of the domain are mapped to zero. When a weighted vertex v1 is added to C, the

region corresponding to cone c1 defined by angle θ1 is altered by adding w(v1) to

the scalar field, as shown in Figure 3.3.a. Note that S is still null outside c1, that

is, the weight is added to the field at point p only if p ∈ c1.
By adding a second vertex v2 to collection C, another cone c2 is generated,

changing S in its area of influence by w(v2) (see Figure3.3.b). Notice that the value

of the scalar field at a given point p is computed by sum of the weights of cones that

intersect p. Adding to C a group of vertices with weight +w and another group

with weight −w, it is poossible to define a limited region mapped to w in S (see

Figure 3.3).

The Weighted Vertex Collection is closely related to two previously proposed

11

(a) (b)

Figure 3.1: The 2D points are mapped in (a) continuous and (b) discrete scalar
values, where the discrete values in (b) represent a planar subdivision.

Figure 3.2: The weighted vertex v1 with w(v1) = +w and θ(v1) = θ1 generates a
cone that perturbs the scalar field with weight +w.

12

(a) (b)

(c) (d)

Figure 3.3: (a) The weighted vertex v1 generates a cone +w with slope θ; (b)
another vertex v2 with the same slope generates a new cone −w which limits the
region mapped to w; (c) (d) v3 and v4 are added with θ = 0 to determine all sides
of the region.

13

Figure 3.4: Vertex Representation example: (a) vertex v1 is added generating a cone;
(b) v2 is added and limits the first cone; (c) the orthogonal object with weight w is
defined by six vertices.

Figure 3.5: Weighted Edge Collection, (a) edge e1 is added generating an infinite
trapezoid; (b) e2 is added defining the top edge of the trapezoid.

approaches for representing discrete scalar fields, namely, the Vertex Representation

[24] and the Weighted Edge Collection [25]. In particular, the Vertex Representation

is a simplified version of the present scheme where all vertices have θ = 0 and thus

are able to model only fields with borders perpendicular to the coordinate axes. On

the other hand, in the Weighted Edge Collection each weighted edge can be seen

as a conjugation of two vertices having the same θ but with symmetric weights,

and thus model trapezoidal regions such as the one shown in Figure 3.5.a. Clearly,

the Weighted Vertex Collection can generate the same trapezoidal regions (compare

with Figure 3.3.b). The difference between these proposals is the way they define the

primitive elements that change the scalar field, but the Weighted Vertex Collection

and the Weighted Edge Collection have equivalent modeling capability. One of

the aims of the present work is to simplify the algorithms and data structures by

replacing edges with vertices.

In a canonical representation of a Weighted Vertex Collection, the following con-

14

straints are imposed: (1) the weight of a vertex can not be zero; (2) two vertices

v1 and v2 with the same position may be defined only if the θ1 6= θ2. Otherwise, v1

and v2 are replaced by v3 at the same position, where w(v3) = w(v1) + w(v2) and

θ3 = θ1 = θ2; and (3) θ 6= π/2 and θ 6= 3π/2 lest this vertex create a degenerate

cone with null area.

The Vertex Representation, Weighted Edge Collection and Weighted Vertex Col-

lection can represent digital images, understood as scalar fields where cells of a

regular grid are mapped onto colors. They can also serve as representations of pla-

nar subdivisions, where each partition is mapped onto a label or a set of attributes.

In the Object Modeling Technique for Geographic Application (OMT-G) presented in

[26] and discussed in [1], the conceptualization of a representation of the real world

through geographic data can be divided two classes of entities: geo-fields and geo-

objects. The first represents the group of continuous phenomena in space such as

temperature, soil, relief, geology and rainfall. The geo-field class is further divided

into planar subdivisions, triangular irregular networks (TIN), tesselations, sampling

and isolines. On the other hand, Geo-objects are the group of objects with bound-

aries defined and individualized as buildings, streets, rivers and crimes. This group

is divided into objects “with geometry” such as points, lines and polygons, and those

“with geometry and topology”: nodes, unidirectional lines and bidirectional lines.

Analyzing the classification of the OMT-G, one concludes that the Weighted Ver-

tex Collection can be used to represent planar subdivisions (geo-field), tesselations

(geo-field) with discrete values, and polygons (geo-object).

3.2 Properties and operations on Weighted Ver-

tex Collections

Let α and β be scalar values, S be a scalar field, C be a weighted vertex collection

that represents S, v1 and v2 be vertices in C, Sv be the field-induced by vertex v

and p(v), w(v) and θ(v) be the position, weight and θ of v respectively. Then we

may recognize the following properties of Weighted Vertex Collections (WVCs):

Scalar Multiplication the multiplication of field S by a scalar α, denoted αS,

means keeping the v in the same position, and multiplying w(v) by α, ∀v ∈ C.

Vertex Addition the sum of vertices v1 and v2 is equivalent to put them in the

same representation. The intersection of the areas of influence produced by

v1 +v2 is equal to the sum of their weights: Sv1+v2 = Sv1 +Sv2 . See Figure 3.3.

Uniqueness of representation if a scalar field S can be represented by a canon-

ical WVC C, then no other WVC can represent S.

15

Boundary property weighted vertices of C are found only on points where scalar

field S changes.

In order to process WVCs, we define the following set of operations:

Add The sum of two scalar fields, denoted S = S1 + S2, is performed by placing

the vertices of both collections in the same vertex collection, i.e., C = C1∪C2.

Value at Let P be a set of points pi and S(pi) denote the value of S at pi. Then,

the Value at operation determines S(pi),∀pi ∈ P .

Draw Creates a picture that represents the values of a scalar field using different

colors.

Scalar Transformation Computes a scalar field S ′ = f(S), where f is a scalar

function < → < such that f(0) = 0. In other words, this function computes

a new scalar field where, if S(p) = x, then S ′(p) = f(x) for all points p

of the plane. Therefore, a new vertex collection is created to represent the

transformed scalar field. This operation can be used to compute typical Map

Overlay operations such as union, intersection and difference.

Convert Converts a collection of circulations of vertices (polygons) into a Weighted

Vertex Collection and vice-versa.

3.3 Scan

Since the WVC represents the changes in a scalar field – but not the field directly

– all operations that must evaluate the field are computed with the aid of a so-

called Scan procedure. A Scan is based on the plane sweep [22] or, more specifically,

the line sweep paradigm, since the problems at hand are two-dimensional. In a

nutshell, the line sweep paradigm can be viewed as a form of divide-and-conquer

approach, where a two-dimensional problem is solved by breaking it up into several

one-dimensional subproblems. This subdivision is accomplished by analyzing points

in two-space as a horizontal (or vertical) line is swept along the y (or x) axis.

In order to process WVCs, a scan line is swept upwards along the y axis. Notice

that the vertices generate areas of influence, or cones, spanning upwards as a result

of the constraint 0 ≤ θ < π and θ 6= π/2. To achieve an efficient scan of a scalar

field, it is necessary to implement a data structure L(y) that describes the variation

of the field along a horizontal line y = c, for a constant c (see Figure 3.6). In other

words, L(y) records which x coordinates correspond to changes of the scalar field.

To accomplish this, the scan line needs to be updated at so-called stop events. An

16

(a)

(b)

(c)

Figure 3.6: Illustrating the relationship between scanlines and cones: (a) vertex
v1 with weight w(v1) = +w generates a cone crossed by a scanline L(y); (b) to
determine the scalar values S(pi) at points pi,∀pi ∈ L(y), we need to record the
changes above L(y); and (c) changes occur when L(y) crosses the cone rays – these
are called stop events in the plane sweep paradigm. The ray that crosses L(y) at
a smaller x coordinate generates a change of +w(v1) along the scanline, while the
other ray introduces a change of −w(v1).

17

event is associated to one or more rays, and can occur (a) when a vertex enters

the scan line, thus generating two new insert events evin one for the sloping ray

and another for the vertical ray; and (b) when the rays – boundaries of the cones –

intersect themselves, generating an intersect event evinter.

3.3.1 Scan order

The Scan procedure requires that vertices are sorted in the order in which they

will be encountered by the sweep. The same order is also imposed on the events

generated by the vertices. In fact, the events are usually stored in a priority queue

E where the priority attached to the event is given by the scan order.

If the vertices of the collection are already in scan order, then the insert events

ein are also created in the correct order. The first vertex in the WVC has the either

the lowest y coordinate or, in case of equal abscissas, the lowest x coordinate. When

two vertices occur at the same position, the highest geometric angle θ is used as a

tie breaker.

While events ein are created at the beginning of the procedure, events evinter are

detected during the Scan, as described in the classic plane sweep problem. Just as

with the vertices, the first scanned event has the either the lowest y coordinate or,

in case of equal abscissas, the lowest x coordinate. When two insert events occur at

the same position, the highest geometric angle θ of the associated ray is used as a

tie breaker. Aside from that, if two intersect events or two events of different types

occur at same point, then they may be processed in any order.

3.3.2 Event processing

At the beginning of the Scan, all events of type evin are added to E and other

pertinent structures are created - see Algorithm 3.1. The processing loop starts by

popping the next event from E: evcurrent = pop(E). If E becomes empty, then the

processing stops.

The scan strategy employed requires all events at a certain point p to be processed

in batch. In other words, to maintain a consistent state of scanline L(yn) before and

after each p, it is not updated at every event, but only when all events occurring at

the same coordinate p are known. See Algorithm 3.2.

As shown in the example of Figure 3.6, changes in the scalar field happen when

the scan line crosses the rays of a given cone c. It is essential to record the change

these rays impose on L(y), since they represent the knowledge at current y of changes

on the scalar field at future (higher) y values. These rays are placed in L(y) according

to the x coordinate of their intersection with the scan line, termed cross(r, L(y)),

thus respecting the scan order rule. Note, however, that it is not necessary to

18

Algorithm 3.1 prepareScan - creates the initial structures to Scan process

Input: C - a WVC collection
Output: L(y), E - returns the scanline structure and event queue
E ← new EventList
L(y)← new ScanLine
for each v ∈ C do

rv, rs ← rays(v) . Getting rays of v
if θ(v) < π/2 then . Which ray has the higher angle?

r1, r2 ← rv, rs . Insert ein(rv) first to maintain E in scan order
else

r1, r2 ← rs, rv . Else, insert ein(rs) first
end if
ein(r1)← new Insert Event(r1,+w(v)) . Create event with ds(r1) = +w(v)
push(E, ein(r1)) . Insert new event in E
ein(r2)← new Insert Event(r2,−w(v)) . Create event with ds(r2) = −w(v)
push(E, ein(r2))

end for
return L(y), E

Algorithm 3.2 scan - scan next point p

Input: L(y), E
Output: L(y), E

Creates empty lists Lstin and Lstinter
pcurr ← point(top(E)) . Gets cordinate value of top element in E
repeat

e← pop(E) . Get the next event
if e is an insert event then

push(Lstin, e) . To put event in insert list
else if e is an intersect event then

push(Lstinter, e) . To put event in intersect list
end if

until pcurr 6= point(top(E)) ∨ empty(E) . Gets events until to change point or E
becomes empty.
processEvents(L(y), Lstin, Lstinter, E) . Update scanline - see Algorithm 3.3

19

explicitly record the coordinate cross(r, L(y)) because this point changes as L(y)

moves upwards. According to the plane sweep paradigm, any need to update L(y)

and its list of rays originates from the processing of an event evin or evinter.

Let v denote a weighted vertex, w(v) its weight, c(v) the cone representing the

region affected by v, r(v) the rays of v – rv(v) the vertical and rs(v) the sloping

ray, E the priority queue of events, evin(r) the event for inserting r in the scan line,

evinter(rcr1, rcr2) an intersect event between rays rcr1(v) and rcr2(v), L(y) the current

status of scan line at y, and ds(r) the value added to the scalar field on the right of

r(v) as it crosses L(y). Then, the event processing occurs in the following way:

Processing of insert event evin(r): Since the scan line has just reached the tip

of cone c(v), rv(v) and rs(v) are inserted into L(y). The scalar increments

ds(r) were set to +w(v) for the first ray and −w(v) for the second ray with

respect to the scan order rule - see Figure 3.6 and Algorithm 3.1. Procedures

Insert ray in scanline and Check new intersections are performed on inserted

rays. See the first loop of Algorithm 3.3.

Processing of intersection event evinter(rcr1, rcr2): Since rcr1(v) and rcr2(v) are

already in L(y), their order must be switched - this is done by removing and

reinserting the rays. The new neighbors of the two rays in L(y) need to be

examined by executing Check overlapping rays. See the last loop of Algorithm

3.3.

Check overlapping rays: Before a ray r(v) is added or relocated to L(y), it is

checked if r(v) coincides with another ray (rovlap) already in L(y). If so, r(v)

is not inserted or is removed from L(y) and rovlap has ds(rovlap) updated to

ds(rovlap) + ds(r). If the resulting ds(rovlap) is zero, then rovlap is removed too.

See the Algorithm 3.4.

Check new intersections When a ray r(v) is inserted, relocated or removed from

L(y), it is necessary to check if new neighbors in L(y) cross themselves later

in the scan process. Let i be the position (i.e., index) of r(v) in the list of

rays of L(y), then the two neighboring rays are in positions i − 1 and i + 1

when r(v) is inserted or relocated. When r(v) is removed from L(y), then

its two former neighbors are checked for intercection with each other. If the

intersection occurs, a new event evinter on the intersection point is added to

E. See Algorithm 3.5.

The Algorithms 3.2, 3.3, 3.4 and 3.5 are a straightforward pseudocode to high-

light the main points of Scan process. Figures 3.7, 3.8, 3.9, 3.10 and 3.11 show an

example of the scan process for an isosceles triangle. Some important details of the

process are listed below:

20

1. The events are processed in batch for each point p.

2. In some steps, such as depicted in Figure 3.7.f and Figure 3.8.f, the rays cross

themselves, however an intersection event is added in E only when the cross

point occurs later in scan process or, in other words, when the cross point has

a higher y than the current y as in Figure 3.8.e.

3. In Figure 3.10.e an intersection event is processed, thus the positions of rs(v2)

and rv(r1) were switched in L(y).

4. Events can ocur at the same point like, for instance, in Figure 3.8.c, where

four insert events are processed following the scan order.

5. Only the events of highest priority in E are shown at each moment

in the figures. The complete list E at the beginning of the scan is:

evin(rv(v1)), evin(rs(v1)), evin(rs(v2)), evin(rv(v2)), evin(rv(v3)), evin(rs(v3)), evin(rs(v4))

and evin(rv(v4)).

6. As discussed previously, the intersection events are discovered during the scan

process. For example, in Figure 3.8.e event einter(rv(v1), rs(v2)) is detected and

added to E.

7. The algorithm explanations presented here do not consider horizontal rays,

that is, the sloping rays generated by weighted vertices where θ = 0. Horizontal

rays are processed in one update of L(y), therefore they are never inserted or

removed from the scanline. The algorithms can be adjusted to include a new

event type evhline(r), where the sweep must detect and process the intersection

of a horizontal ray with other rays.

Algorithm 3.3 processEvents - process events to update L(y)

Input: L(y), Lstin, Lstinter, E
Output: none
for each ein ∈ Lstin do

r ← ray(ein) . Ray associated to event
insertRay(L(y), r, E) . Insert ray in scanline - see Algorithm 3.4

end for
for each einter ∈ Lstinter do

rcr1, rcr2 ← rays(einter) . Rays associated to event
deleteRay(L(y), rcr1)
deleteRay(L(y), rcr2) . Remove rays of scanline ...
insertRay(L(y), rcr1, E) and reinsert to reorder
insertRay(L(y), rcr2, E) . See Algorithm 3.4

end for

21

Algorithm 3.4 insertRay - insert ray in scanline

Input: L(y), r, E
Output: none
if overlap(L(y), r) then . Does r overlap another ray in the scanline?

i, rovlap ← getOverlap(L(y), r) . Obtain overlapped ray and its index
ds(rovlap)← ds(rovlap) + ds(r) . Update value added to scalar field
if ds(rovlap) = 0 then . Zero field increment?

checkInter(L(y), i− 1, i+ 1) . Test new neighbors - see Algorithm 3.5
delete(L(y), rovlap) . Remove ray from scanline

end if
else . Rays do not overlap: insert r in scanline

i← insert(L(y), r) . Insert ray, obtaining the insertion index i
checkInter(L(y), i, i+ 1, E) . Test new neighbors - see Algorithm 3.5
checkInter(L(y), i, i− 1, E)

end if

Algorithm 3.5 testInter - test scanline rays for intersection

Input: L(y), i1, i2, E
Output: none
r1 ← getAt(L(y), i1) . Get rays at the given indices
r2 ← getAt(L(y), i2)
if cross(r1, r2) then . Crossing rays?

pcross ← crossPoint(r1, r2) . Compute the intersection point
einter ← new Intersect Eevent(r1, r2, pcross) . Create intersection event
insert(E, einter) . Add event to event queue

end if

22

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Step by step scan of an isosceles triangle - part 1 of 5.

23

(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Step by step scan of an isosceles triangle - part 2 of 5.

24

(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Step by step scan of an isosceles triangle - part 3 of 5.

25

(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Step by step scan of an isosceles triangle - part 4 of 5.

26

(a) (b)

(c) (d)

Figure 3.11: Step by step scan of an isosceles triangle - part 5 of 5.

27

3.4 Operations

3.4.1 Sum

Consider two weighted vertex collections C1 and C2 defining scalar fields S1 and

S2 respectively. To create a new field S = S1 + S2 simply perform C = C1 ∪ C2.

As C1 and C2 are sorted in scan order, this operation can be implemented by a

merge (see Algorithm 3.6). Note that when computing the union of the collections,

coinciding vertices with the same θ may have to be merged to maintain the canonical

representation as described in Section 3.1.

The Sum operation together with the Scalar Transformation can be used to

implement Map Overlay operations. Therefore, if the resulting collection needs not

be stored in disk, i.e., it is to be used as input to a Scalar Transformation and then

discarded, then we can build C with memory pointers to elements of C1 and C2.

Algorithm 3.6 sum – add two scalar fields represented by two WVC
Input: C1, C2

Output: New collection C
i1 ← 0
i2 ← 0
C ← new WV C
while i1 < |C1| ∧ i2 < |C2| do . |C| returns the size of collection

if getAt(C1, i1) < getAt(C2, i2) then . Next vertex in scan order?
push(C, getAt(C1, i1)) . Insert the vertex at end of C
i1 ← i1 + 1

else
push(C, getAt(C2, i2))
i2 ← i2 + 1

end if
end while
while i1 < |C1| do

push(C, getAt(C1, i1))
i1 ← i1 + 1

end while
while i2 < |C2| do

push(C, getAt(C2, i2))
i2 ← i2 + 1

end while
return C

3.4.2 Value At

Let S be a scalar field, P be a set of points in scan order and S(p) denote the

value of S at p. Then, to perfom Value At, the algorithm obtains the next point

28

pvalueAt = pop(P) and executes the Scan procedure until reaching pscan = pvalueAt,

where pscan is the last coordinate updated in L(y). Thus, S(p) is equal to the sum

of field changes introduced by rays to the left of px. The process is repeated until

P is empty.

Algorithms 3.7 and 3.8 describe the process in detail. Procedure prepareScan,

described in Algorithm 3.1, must be modified so as to include special evaluation

events eveval(p) in E. Notice, however these events do not update L(y), serving

only to ensure that scanline will stop at p to evaluate it. In addition, the modified

prepareScan simply creates events for the merge of two sorted lists in scan order:

the WVC and P . Figure 3.12 illustrates the process to evaluate two points.

Algorithm 3.7 valueAt – calculates the scalar values at a set of points

Input: C,P – a WVC and a point list
Output: Vp – a list of scalar values . The calculated values are returned in a list
L(y), E ← prepareScan(C,P) . A variant of Algorithm 3.1
while |P | > 0 ∨ |E| > 0 do

p← pop(P) . Get next point
while point(top(E)) > p do . Scan until the next event in E stays after p in

scan order
scan(L(y), E) . Scan next point pscan

end while
s← computeV alueAt(L(y), p) . See Algorithm 3.8
push(Vp, s) . Add the scalar value to the result

end while
return Vp

Algorithm 3.8 computeV alueAt – calculates the scalar value at one point on a
scanline
Input: L(y), p
Output: s – the value of scalar field at
s← 0
for each r ∈ L(y) do

pcross ← crossPoint(r, L(y)) . Compute the point where ray crosses L(y)
if x(pcross) < x(p) then . Crossing point is at a lower x than p?

s← s+ ds(r) . Add ray change to scalar field
else

return s . Stop the loop and return the value
end if

end for
return s . p has bigger abscissa than all rays

29

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Example of Value At operation with two points. Details about the
scan update at each y can be seen in Figures 3.7 through 3.11

.

30

3.4.3 Draw

The purpose of the Draw operation is to generate a picture of the regions where

each class of the map symbology is painted in its corresponding color. Each color

is associated to a value w of the scalar field, thus it may be necessary to display a

scalar field represented by WVC as, for instace, a result of Scalar Transformation.

A convenient way to paint a polygonal region represented by a WVC is to gen-

erate a trapezoidal decomposition of the region, and rendering each trapezoid with

the appropriate color. The Computational Geometry literature (e.g., [22]) describes

a classical algorithm for tiling the plane with trapezoids with sides adjacent to a

given collection of line segments.

A trapezoid t must be created whenever a evin(r) or evinter(rcr1, rcr2) are pro-

cessed in Scan operation, where this new t is limited by two rays laterally, in top

by the L(y) and in bottom by the above trapezoid already created or by L(y0), ie,

the horizontal line in beginning of scan. To compute the weight, namely w(t), it is

necessary performs the Value At operation. The following procedures describe the

creation of trapezoids given the events:

1. If a evin(r) inserts r in L(y) at position i, then one trapezoid must be created

between rays i− 1 and i+ 1.

2. When a evin(r) is processed and r overlaps another ray rovlap in scanline at

position i, thus one trapezoid limited laterally by rays i and i + 1 must be

created. Besides from that, if ds(rovlap) is updated to zero, thus will be removed

from L(y), then other trapezoid is generated between rays at i− 1 and i.

3. Whenever that one or more evinter(rcr1, rcr2) updated L(y) onto point pcross,

thus the trapezoids need be generated for all rays r passing in pcross. Each

trapezoid is limited laterally by ray r and its left ray.

It is noteworthy that two vertical rays are added in Scan process to support

the trapezoidal decomposition, in order that each sentinel ray be added rightmost

and leftmost than the events and that this sentinels stay in scanline during the

entire scan. These sentinel rays not change L(y). Figure 3.13 shows a trapezoidal

decomposition of Figure 3.7.

3.4.4 Convert

Since GIS software typically represent regions by polygons, it is essential to devise

a procedure to convert such representations to Weighted Vertex Collections. An

operation to convert a Weighted Vertex Collection into vertex circulations is also

important.

31

Figure 3.13: Example of trapezoidal decomposition, where the white trapezoids have
w = 0 and gray trapezoids have w = +w.

The conversion to Weighted Vertex Collection is relatively trivial. First, it is

created one collection C for each polygon P of the map. Let S be a scalar field, C

a weighted vertex collection, P a polygon with counterclockwise vertex circulation,

e an edge of P , p1 the first endpoint of e in circulation order and p2 as the last, x1

and x2 the abscissas of p1 and p2, w the weight to be assigned in S to the region

defined by P and w(v) the weight of weighted vertex v. Each pair of points p1 and

p2 generates weighted vertices v1 and v2 in C. The θ of v1 and v2 are equal to slope

of e. If x1 < x2, then w(v1) = +w and w(v2) = −w. Otherwise, if x1 > x2, then

w(v1) = −w and w(v2) = +w. If x1 = x2, then e is a vertical edge, and need not

be represented in C. After generating the WVC for each polygon, a sum operation

is used to generate one collection with the vertices of all input WVCs. The weight

values may be, for instance, an incremental number given to each class of map or to

each feature.

The conversion of the collection into vertex circulations is performed by a plane

sweep procedure. The scan searches the regions boundaries with the same value

in the scalar field. These boundaries are given by the cone rays generated by the

weighted vertices.

3.4.5 Scalar Transformation

The scalar transformation is defined as a function f(x) = y; < → < that changes

the values of the scalar field S to new values in a transformed field St, where a new

vertex collection Ct must be created to represent St.

Typical Map Overlay operations such as union, intersection and difference can

be performed with the aid of a scalar transformation. Consider two collections C1

and C2, representing polygons P1 and P2 respectively. The region defined by P1 is

mapped to 1 and the P2 region to 2 - see Figure 3.4.5. For instance, by applying

the Sum operation C3 = C1 ∪C2, it is possible to create the obtain different results

by using an appropriate function:

32

Figure 3.14: Some basic functions to Scalar Transformation.

Union : f∪(x) =

1 if x > 0

0 otherwise

Intersect : f∩(x) =

1 if x > 1

0 otherwise

Difference P1 − P2 : f−(x) =

1 if x = 1

0 otherwise

At first, the transformed collection Ct is empty and a scan process is executed

together on C and Ct using respectively the scanlines L(y) and Lt(y). In initial

understanding, the condition St(p) = f(S(p)), ∀p ∈ S must be satisfied. However,

it is noteworthy by plane sweep paradigm that this check is only necessary in the

stop events e of scan process. Given this consideration, the check may be performed

for each point with a event e processed in L(y) and it may be rewritten to St(e) =

f(S(e)), ∀e ∈ L(y). The S(e) is summed similarly to point in Value At operation,

besides all rays of L(y) and Lt(y) that crosses e must be checked. For aim this, each

ray r is examined sum up to S(e) the pertubation of rays that cross e and have bigger

angles than r, that is, summed pertubations of rays in L(y) that are lower than r in

scan order using the operation cross(r, L(y)), because the interest is to examine the

status of the scalar field above L(y) and on the right of r. Ultimately, a convinient

way to perform and understand the Scalar Transformation is processing all events

of the next point p in scan order and checking the condition St(r) = f(S(r)), ∀r in

L(y) or Lt(y) and that cross p, where S(r, L(y)) or simply S(r) is the value of scalar

field on right of r and above from L(y) until other change occurs in S.

If this condition is not met, it is forced adding a new weighted vertex vnew in Ct

33

and adding the rays rs(vnew) and rv(vnew) in Lt(y), where w(vnew) = St(r)−f(S(r))

and θ(vnew) = θ(r), where θ(r) is the ray angle. If the failure of condition is detected

when a vertical ray is checked, then the new vertex is added in the next check with

a sloping ray - and this necessarily occurs. Otherwise, a vertex with θ = π/2 will

be created.

The Algorithm 3.9 represents a pseudocode of Scalar Transformation with the

above descriptions. The procedure insertRay showed in Algorithm 3.4 must be

ajusted in Algorithm 3.9, because in this case it is not necessary detect intersect

events in Lt(y) - they are already detected in L(y). Thus the procedures checkInter

need not be called.

It is necessary performs S(r) many times for same coordinate p, where at each

computing all rays lower than r in scan order must have their perturbations summed

again. Then seeking a efficient way, the Algorithms 3.9, 3.10 and 3.11 propose to

evaluate the scalar field at left of first ray that crosses p, updating it incrementally

when the procedure getNextRay is performed.

Consider the Figure 3.15 showing a scalar field S with two triangles and the

Figures 3.16 through 3.33 ilustrating an partial example of intersection operation

using the function f∩ above, where the Figure 3.34 presents the transformation

result. It is highlighted in these figures:

1. As the figures are illustrating, it may be defined two distinct moments in Scalar

Transformation: scan next p and check the last p scanned.

2. The Ct received the first vertex in Figure 3.24.c, but the condition fails in

3.24.a when is checked the vertical ray rv(v1). Thus the deficit is computed

(see variable d in Algorithm 3.9) to create a new vertex in the next check over

rs(v2). A similary case occurs in Figure 3.27.a, while in Figure 3.26.b shows a

vertex creation immediately when the condition is not met.

3. The rays of L(y) and also Lt(y) must be checked, as shown in Figure 3.27.a.

4. About the scan process, two points have events in L(y1) and they are updated

separately.

3.5 The WVC data structure

Following are recommendations of convenient data structures to a WVC implemen-

tation.

The vertices, events and rays can overlap and thus share a point in space, thus

to optimize storage space these points are organized in a hash table. Considering

34

Algorithm 3.9 scalarTransf - perform the operation of scalar transformation

Input: C, f - a WVC and the transformation function.
Output: Ct - the transformed WVC
L(y), E ← prepareScan(C) . See Algorithm 3.1
Ct ← new WV C . Create a empty WVC
while |E| > 0 do . Until the scan finished

p← point(top(E)) . Get the next coordinate of event that will be processed
scan(L(y), E) . See Algorithm 3.2
R← getRays(L(y), p) . Get rays that crosses p sorted by higher angle
Rt ← getRays(Lt(y), p)
S(r)← valueAtRay(L(y), top(R)) . See Algorithm 3.11
St(r)← valueAtRay(Lt(y), top(Rt))
d← 0 . Stored the deficit in scalar field at last check
while |R| > 0 ∨ |Rt| > 0 do . While there are rays to test...

r ← getNextRay(R,Rt, S(r), St(r)) . See Algorithm 3.10
if St(r) 6= f(S(r)) ∨ d 6= 0 then . Is the condition met?

w ← St(r)− f(S(r)) + d . Compute the weight - see Algorithm 3.11
if θ(r) = π/2 then . Is a vertical ray?

d = w . Stored the deficit to next loop...
else

d = 0 . Nulled the deficit, if exist
vnew ← new V ertex(p, θ(r), w) . Creating the necessary vertex
push(Ct, vnew) . Insert the new vertex in Ct

if θ(r) > π/2 then . To insert rays in Lt(y) obeying scan order
insertRay(Lt(y), rs(vnew)) . A variant of Algorithm 3.4
insertRay(Lt(y), rv(vnew))

else
insertRay(Lt(y), rv(vnew))
insertRay(Lt(y), rs(vnew))

end if
end if

end if
end while

end while
return Ct . Return the result

35

Algorithm 3.10 getNextRay - get the next ray to be checked

Input: R1, R2, s1, s2 - two lists of rays sorted by higher angle and the scalar value
of S1 and S2 to the right of the top ray of each list.

Output: r - the next ray
r1 ← top(R1) . Look next ray of each list, if |R| = 0 thus θ(top(R)) = −π...
r2 ← top(R2)and this ray never is returned in this function.
if θ(r1) > θ(r2) then

r ← pop(R1) . The next ray is from R1

s1 ← s1 + ds(r) . Updating the scalar value so that s1 = S1(r)
else if θ(r1) < θ(r2) then

r ← pop(R2) . The next ray is from R2

s2 ← s2 + ds(r) . Updating the scalar value so that s2 = S2(r)
else . θ(r1) = θ(r2)

r ← pop(R2) . Withdraw, so gets next in both lists
s2 ← s2 + ds(r)
r ← pop(R1)
s1 ← s1 + ds(r)

end if
return r . Return the result

Algorithm 3.11 valueAtRay - get the value of scalar field given a ray

Input: L(y), r1 - a scanline and a ray.
Output: s - scalar value
p1cr ← cross(L(y), r1) . Compute the cross point between ray and scanline
s← 0
for each r2 ∈ L(y) do

p2cr ← cross(L(y), r2)
if x(pcr1) > x(pcr2) ∨ θ(r1) < θ(r2) then . Comparing by scan order

s← s+ ds(r2) . Updating the scalar value
else

return s . Stop the loop and return the scalar value
end if

end for
return s . r1 is rightmost than all rays of L(y)

36

Figure 3.15: A scalar field S to be transformed. The white area values 0, darkest
area values +2 and otherwise +1.

that points are ajusted a fine grid to robustness of floating-point operations, the

hash function may to receive the coordinate and to give a grid position, where it

is important choose a function that avoids collisions of two different coordinates as,

for instance, a function that uses the first integers digits of coordinates. Otherwise,

the complexity O(1) of hash table will be compromised [21].

The structures of event queue E and scanline L(y) must have its elements ordered

in scan order, where ordered lists or balanced trees can be used. As long as is applied

a sorting algorithm suitable, then the complexity is O(log n) for search or update

and O(n log n) for sorting the entire structure.

Analysing the complexity of operations described in Section 3.4:

Sum: the complexity is O(n) to merge the sorted lists of vertices, where n is the

size of two summed collections.

Value At: given n as the size of L(y), p as number of points to be evaluated, and I

as the number of ray intersections, then the scan process provides a complexity

of O((I + n+ p) log n) [22]. However, to compute the scalar value at a point

in L(y) as described by procedure computeV alueAt in Algorithm 3.8, it is

necessary O(n) time because the sum is computed by a sequential examining

of L(y). Thus the total complexity in the worst case is O(n(I+n+p) log n) =

O(n2). Alternatively, a data structure such as a skip list [27] can be applied

to grant O((I + n+ p) log n).

Convert: to convert vertex circulations in WVC is complexity O(n log n) to build

the ordened collections of weighted vertices, given n as the number of vertices

in all circulations. On the other hand, the conversion of WVC to a vertex

37

(a)

(b)

(c)

Figure 3.16: Example in step by step of Scalar Transformation - part 1 of 18.

38

(a)

(b)

(c)

Figure 3.17: Example in step by step of Scalar Transformation - part 2 of 18.

39

(a)

(b)

(c)

Figure 3.18: Example in step by step of Scalar Transformation - part 3 of 18.

40

(a)

(b)

(c)

Figure 3.19: Example in step by step of Scalar Transformation - part 4 of 18.

41

(a)

(b)

(c)

Figure 3.20: Example in step by step of Scalar Transformation - part 5 of 18.

42

(a)

(b)

(c)

Figure 3.21: Example in step by step of Scalar Transformation - part 6 of 18.

43

(a)

(b)

(c)

Figure 3.22: Example in step by step of Scalar Transformation - part 7 of 18.

44

(a)

(b)

(c)

Figure 3.23: Example in step by step of Scalar Transformation - part 8 of 18.

45

(a)

(b)

(c)

Figure 3.24: Example in step by step of Scalar Transformation - part 9 of 18.

46

(a)

(b)

(c)

Figure 3.25: Example in step by step of Scalar Transformation - part 10 of 18.

47

(a)

(b)

(c)

Figure 3.26: Example in step by step of Scalar Transformation - part 11 of 18.

48

(a)

(b)

(c)

Figure 3.27: Example in step by step of Scalar Transformation - part 12 of 18.

49

(a)

(b)

(c)

Figure 3.28: Example in step by step of Scalar Transformation - part 13 of 18.

50

(a)

(b)

(c)

Figure 3.29: Example in step by step of Scalar Transformation - part 14 of 18.

51

(a)

(b)

(c)

Figure 3.30: Example in step by step of Scalar Transformation - part 15 of 18.

52

(a)

(b)

(c)

Figure 3.31: Example in step by step of Scalar Transformation - part 16 of 18.

53

(a)

(b)

(c)

Figure 3.32: Example in step by step of Scalar Transformation - part 17 of 18.

54

(a)

(b)

Figure 3.33: Example in step by step of Scalar Transformation - part 18 of 18.

55

(a) (b)

Figure 3.34: The result of Scalar Transformation that perform a intersect operation
applying the function f∩ described above.

circulations is performed by scan and demands O((I + n) log n + n) to build

the output with size n using skip list and O(n2 + n) without.

Draw: similarity to Value At complexity, it has O((I + n) log n + m) using skip

list and O(n2 +m) otherwise, where n is the size of WVC and m the number

of created trapezoids.

Scalar Transformation: also has its complexity given by scan operations and the

size of output: O((I + n) log n+m log m) or O(n2 +m log m) if applying or

not the skip list, consider n the size of WVC and m the size of transformed

WVC.

The space complexity using all these structures is O(n).

An import decision in a implemetation is the use of skip list structure, in spite

of seem reasonable to assume that the cost of maintaining this or similar structure

is not worthwhile if ||L(y)|| stays small. Second Pugh [27], the skip lists are a data

structure that can be used in place of balanced trees, where are used probabilistic

balancing rather than strictly enforced balancing and as a result the algorithms for

insertion and deletion in skip lists are much simpler and significantly faster than

equivalent algorithms for balanced trees. The skip list guarantees that pertubations

over L(y) can be summed visiting O(n log n) rays.

Certainly the critical operation is the Scalar Transformation, because it perfoms

scan and is necessary to execute Map Overlay. A classical pipeline of WVC is

perfomed with (1) Convert two spatial data to WVC, (2) Sum this two WVC,

(3) Scalar Transformation for Map Overlay and maybe (4) Convert the result to

circulations of vertices. Thus we have using skip list: O(n log n+n+ (n+ I) log n+

m logm + (n + I) log n + n) or simply O((n + I) log n + m logm). If it is assumed

that n ≡ m, then O((n + I) log n) summarizes the time complexity. Without the

use of the skip list, the complexities are O(n2 +m logm) or O(n2).

56

Chapter 4

Implementation, Tests and Results

A straightforward implementation of the Weighted Vertex Collection data structure

was written in the C++ language and compiled using the Gnu Compiler Collection

4.2.6 (g++). It is capable of computing the basic operations, properties and the line

sweep process described in Chapter 3, namely, the Scan, Add, Value At, Draw, Scalar

Transformation and Convert operations. Main geometric entities were implemented

using the Computational Geometry Algorithms Library (CGAL) 4.2 [28], whereas

the ShapeLib 1.2.9 [29] library provided support for reading and writing cartographic

data in the ubiquitous Shapefile format.

The objectives of this implementation are (1) to demonstrate that the WVC can

be applied to the processing of Map Overlay operations, and (2) that the processing

time of WVC can be competitive with mainstream GIS software.

The implementation presented in this work, processes the Value at operation or

similar sequentially, since it seems reasonable to assume that the cost of maintaining

a skip list or similar structure is not worthwhile if ||L(yi)|| stays small. See a

discussion in section 3.5.

In this implementation the weighted vertices are ajusted a grid with 2n positions

to robustness of floating-point operations, where the n is large enough to the po-

sitional accuracy of spatial data. The angle θ is replaced by a direction vector to

facilitate geometric operations as ray intersect and ray orientation.

The experiments described below aim to compare the efficiency of the a WVC

implementation against those of two mainstream GIS systems, namely ArcGIS for

Desktop 10.2.1 and QGIS 2.2 Valmiera. Timings were obtained for the processing of

Map Overlay operations using four real spatial datasets in Shapefile format. Some

actions were taken to ensure a fair comparison of processing times: (a) the first run

is discarded and the ten subsequent ones are averaged; (b) the Map Overlay oper-

ations are called by scripts in Python packages: arcpy and processing, respectively,

for the ArcGIS and QGIS systems; (c) timings for the WVC implementations com-

prise only the execution of Scalar Transformation operations; (d) QGIS performs

57

ID Data Poly Vertices Ipoly Ipoint Iline

1 District 3 838 4 4 0

Forest 9 3,831

2 Municipals 645 83,782 942 1,485 0

Soil Potential 45 4,758

3 Land Use 1,394 134,682 1,913 16,890 13,311

Vegetation 1,473 139,054

4 Municipals 5,564 1,195,910 10,007 19,327 0

Soil Potential 409 49,073

Table 4.1: Characteristics of datasets used in the experiments. Poly is the number
of polygons, Vertices is the total number of polygon vertices, Ipoly, Ipoint and Iline
are the number of 2D, 1D and 0D geometries returned in a intersection operation
between data.

operations without access to files, ie it reads and writes only in memory; (e) since

it was not possible to measure the execution time of the ArcGIS for Desktop (t′arc)

without including the time to access input files, the processing time required by a

test program written in C++ using ShapeLib to load files in memory was measured

(tshplib) subtracted from the total time, i.e., tarc = t′arc − 2tshplib.

Details about the spatial datasets used in the experiments are shown in Table

4. The first dataset is the forest cover of Parque Nacional da Tijuca and bound-

aries of three districts in Tijuca administrative region, that dataset was produced

by Instituto Pereira Passos (an agency of Rio de Janeiro’s municipal government)

at 1:100,000 scale. The second and fourth datasets were produced by Instituto

Brasileiro de Geografia e Estat́ıstica (IBGE), where municipal boundaries of 2007

are at 1:250,000 scale and soil potential for agriculture at 1:1,000,000. The second

dataset is a subset of fourth. The third dataset is a mapping at 1:50,000 scale of veg-

etation cover and land use in the Teresópolis municipality. This dataset of 1996 was

produced by Sistema Labgis of Universidade do Estado do Rio de Janeiro. Figure

4.1 shows an overview of the dataset geometries.

Map Overlay operations were performed using the three softwares and execution

times are shown in Table 4. Column Diff % shows the percentage difference of

processing time between WVC and the faster GIS software applying equation below.

All times were measured on a laptop computer equipped with a Pentium Dual-

Core 2.2 GHz 64-bits processor and 4 GB of RAM, running 64-bit Windows 7. All

softwares were compiled for 32-bit architectures.

Dif% =
twvc ∗ 100

min(tarc, tqgis)

58

Dataset Test Operation twvc tarc tqgis Dif %

1 1 UNION 0.074 0.149 0.122 60.66%

2 INTER 0.071 0.200 0.120 59.1%

3 XOR 0.090 0.226 0.116 77.6 %

2 4 UNION 1.206 2.094 21.085 57.6%

5 INTER 1.128 1.851 16.562 60.9%

6 XOR 0.915 1.186 ** 77.2%

7 CLIP 0.876 0.865 2.66 101.3%

3 8 UNION 1.948 2.421 4.813 80.5%

9 SELECT 1.591 1.092 3.875 145.7%

10 DISSOLVE 1.561 1.003 59.115 155.6%

4 11 UNION 17.707 23.476 >600 75.43%

Table 4.2: Executions time in seconds with WVC, ArcGIS for Desktop and QGIS.

For these tests, the INTER operation computes a geometric intersection of two

polygon collections A and B, recording in the output A ∩ B geometries, i.e., the

intersection of each polygon of one collection with each polygon of the other. The

XOR operation - also called of symmetric difference - is similar and computes (A−
B) ∪ (B − A). The UNION operation produces a similar output, i.e., it computes

A−B, B −A and A ∩B, but keeps the geometries separate. The CLIP operation

cuts the geometries of A using B polygons as a cutter shape, while DISSOLVE

aggregates polygons of a collection based on equality of specified attributes. And

last, SELECT operation performs an INTER operation on a subset of polygons also

based on attributes. The XOR operation failed in test 6 using QGIS, because the

software crashes when executed.

4.1 Comments about processing the Map Overlay

operations with WVCs

As a complement to the examples shown in Section 3.2, this section discusses some

details of the implementation steps used to perform the map overlay operations with

WVCs.

The first step is to perform a Convert operation on the datasets used in the

experiments. When converting the collection of circulations of vertices to WVC

representation, the spatial data of vegetation, soil potential and land use were as-

sociated with a different w value for each map class. The other spatial data were

59

processed so as to associate each polygon with a different w value. The Convert op-

eration reads data in Shapefile format, creates weighted vertices, sorts the collection

in scan order and creates a canonical representation. It processed the datasets 1, 2,

3 and 4 respectively in 0.04, 1.26, 5.44 and 19.22 seconds. Each Shapefile generates

a WVC, i.e., two collections C1 and C2 for each Map Overlay operation.

The next two steps consist of performing a Scalar Multiplication operation using

a constant α, followed by an Add operation. In other words, a WV C representing

C1 + αC2. Constant α must be large enough to allow bitwise operations to identify

the regions of interest in the resulting scalar field. For instance, the Shapefile repre-

senting the land use dataset has 25 classes and was converted to C1. On the other

hand, the vegetation dataset has 15 classes and was converted to C2. Therefore, by

computing C3 = C1 + 100C2 allows us to conclude that, say, a scalar value 1025 in

C3 corresponds to a region where the vegetation class is 10 and the land use class

is 25. Similarly, a scalar value 900 identifies regions where vegetation class is 9 and

that do not lie in any land use class.

With the new collection C3 built, a Scalar Transformation is computed, where

the choice of the function depends on the Map Overlay operation to be executed.

This transformation generates a new collection, which can then be converted back to

a circulation of vertices if so desired. Below are the functions used on the experiments

described in this chapter.

Union : f∪(x) = x

Intersection : f∩(x) =

x if (x ≥ α) ∧ (x mod α 6= 0)

0 otherwise

XOR : fXOR(x) =

x if (x < α) ∨ (x mod α = 0)

0 otherwise

Clip : fClip(x) =

x mod α if (x ≥ α)

0 otherwise

Dissolve : fDiss(x) =

1 if (x ∈ V)

0 otherwise

60

(1) (2)

(3) (4)

Figure 4.1: Overview of dataset geometries with black and gray outlines.

61

Test Operation ||WV Cin|| ||WV Cout|| ||L(y)|| ||SHPin|| ||SHPout||
1 UNION 8,748 8,748 22.42 4,669 6,656

2 INTER 8,748 2,912 6.12 4,669 1,836

3 XOR 8,748 9,021 22.06 4,669 4,820

4 UNION 97,709 97,709 35.70 88,540 96,212

5 INTER 97,709 131,731 71.24 88,540 81,221

6 XOR 97,709 22,495 28.31 88,540 14,991

7 CLIP 97,709 10,432 11,98 88,540 6,292

8 UNION 141,985 141,985 80.56 273,054 145,243

9 SELECT 141,985 72,846 53.36 75,195 37,134

10 DISSOLVE 136,283 82,824 29,20 44,439 42,191

11 UNION 2,045,487 2,198,936 91.45 1,244,983 1,319,852

Table 4.3: The sizes of converted (WV Cin) and transformed (WV Cout) Weighted
Vertex Collections ; ||L(y)|| average size scanline onto stop events; and numbers of
vertices in Shapefiles before (||SHPin||) and after (||SHPout||) Map Overlay opera-
tions in GIS software.

4.2 Discussion of results

The WVC implementation had a better processing time in 8 of 11 tests. As dis-

cussed in Chapter 2, the mainstream GIS softwares perform Map Overlay processing

circulations of vertices at least two steps [20], namely: filter and refinement. In the

filter step are used structures as MBB (minimum bounding box) and spatial indexes,

already the refinement step computes the resultant geometries with tradicionals al-

gorithms of computacional geometry, see a compilation in [22]. Even without has

a filter step, the WVC shows a competitive processing time applying a dimension-

reduction by plane sweep paradigm.

It is noteworthy that one edge of circulation of vertices adds two weighted vertices

in a collection, while each weighted vertex generates two rays. In Shapefile format

the first and last vertices of circulations are coincidents, so we have nv = nc + ne,

where nv, nc and ne are respectively number of vertices, circulations and edges.

Observing the worst case simplistic, size of a weighted vertex collection (nwv) and

the number of rays (nr) into a scan process may be nvc = 2ne and nr = 4ne.

However the Table 4.1 shows a smaller relationship between ||WV Cin||, ||L(y)|| and

||SHPin|| because to two reasons. The first is the canonical form of WVC, that

remove coincidents vertices with same angle θ. See the Figure 4.1 and Table 4.1

and 4, a lowest ratio ||WV Cin||/||SHPin|| is showed in spatial data with more adjacent

polygons - municipalities as example - and the dataset 3 with thousands of lines

intersection.

The second reason is the behavior of L(y) during the scan process, due to over-

62

lapping of rays. When comparing the size of L(y) at a certain yi (||L(yi)||) to

the number of circulations of vertices that crosses at same yi (||CVcross(yi)||), then

||L(yi)|| ≤ ||CVcross(yi)|| or also ||L(yi)|| = ||CVcross(yi)|| −D(yi), where D(yi) is a

number of circulations that crosses yi at same point.

The small value of ||L(y)|| shown in Table 4.1 corroborates the choice of not

using a data structure O(nlogn) to determine the value of the scalar field at a point

onto L(y), as discussed earlier in this chapter.

The WVC implementation had a worse time processing than ArcGIS for Desk-

top on tests 8 and 9, where there was selections by attributes in GIS softwares.

For instance, to perform the intersection on test 8 were filtered the classes ”casual

livestock” and ”meadow” of land use and vegetation data. Obviously the selection

reduced the number of input polygons in Map Overlay operation, then what reduced

the processing time - see Table 4.1 and 4. The times to GIS software performs these

selections by attributes were summed in your total processing time, nevertheless the

WVC implementation had a worse time processing because the weighted vertex col-

lection had no similar input reduction. Within this WVC proposal, a vertex weight

w does not linked a feature, polygon or map class, it reflects a change in the scalar

field. Thus, it is necessary performs a Scalar Transformation to reconstruct and

filter w values, and it was done in tests. Was considered that the execution time tie

in test 7.

63

Chapter 5

Conclusion

The purpose of this work comes to join with the Weighted Edge Collection [25]

and the Vertex Representation [24] to perform Map Overlay operations using plane

sweep paradigm and scalar field concept. Properties, data structures and operations

of Weighted Vertex Collection were defined and a straightforward implementation

using C++ language was presented, where the results demonstrate a competitive

execution time when compared to mainstream GIS software: ArcGIS for Desktop

and QGIS.

As future works more tests and evaluations need to be performed on the WVC

implementation to analyze its behavior on other spatial data and operations, in

addition the proposal of WVC may be increased by optimizing structures, filter

steps or changes in the algorithm. Another interesting way is to extend the WVC

to include the possibility of filtering by attribute, to process geometries of lines or

points, and adoption of parallel algorithms for plane sweep - some papers as [30, 31]

show proposals.

Aside from works as [8, 9, 15, 22] that apply plane sweep to processing Map Over-

lay, the present paper uses scalar field to simplify the algorithms and to introduce

new way to approach. Definitely the WVC is consistent proposal, while is expected

that with some advance, it becomes an interesting alternative to processing of Map

Overlay with Big Spatial Data, unindexed data or other scenarios where new studies

indicate potentialities.

64

Bibliography

[1] CASANOVA, M., CÂMARA, G., DAVIS, C., et al. Bancos de Dados Geográficos.

São José dos Campos, MundoGEO, 2005.

[2] LAURINI, R., THOMPSON, D. Fundamentals of spatial information systems.

A.P.I.C. studies in data processing. Academic Press, 1992.

[3] ORENSTEIN, J. A. “Spatial query processing in an object-oriented database

system”. In: Proceedings of the 1986 ACM SIGMOD international confer-

ence on Management of data, SIGMOD ’86, New York, NY, USA, 1986.

ACM.

[4] RAMOS, J. A. S., ESPERANÇA, C., CLUA, E. W. G. “A progressive vec-

tor map browser for the web”, Journal of the Brazilian Computer So-

ciety, v. 15, pp. 35 – 48, 06 2009. ISSN: 0104-6500. Dispońıvel

em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=

S0104-65002009000200004&nrm=iso>.

[5] BERTOLOTTO, M., EGENHOFER, M. J. “Progressive Transmission of Vec-

tor Map Data over the World Wide Web”, Geoinformatica, v. 5, n. 4,

pp. 345–373, dez. 2001. ISSN: 1384-6175. doi: 10.1023/A:1012745819426.

Dispońıvel em: <http://dx.doi.org/10.1023/A:1012745819426>.

[6] SIQUEIRA, T. L. A.-S. L., CIFERRI, C. D. D. A., TIMES, V. A. C. A., et al.

“The impact of spatial data redundancy on SOLAP query performance”,

Journal of the Brazilian Computer Society, v. 15, pp. 19 – 34, 06 2009.

ISSN: 0104-6500. Dispońıvel em: <http://www.scielo.br/scielo.

php?script=sci_arttext&pid=S0104-65002009000200003&nrm=iso>.

[7] MEIJERS, M. “Cache-friendly progressive data streaming with variable-scale

data structures”, 2011.

[8] BRINKHOFF, T., KRIEGEL, H.-P., SCHNEIDER, R., et al. “Multi-Step Pro-

cessing of Spatial Joins”. In: Proceedings of ACM SIGMOD International

Conference on Management of Data, 1994.

65

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002009000200004&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002009000200004&nrm=iso
http://dx.doi.org/10.1023/A:1012745819426
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002009000200003&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002009000200003&nrm=iso

[9] JACOX, E. H., SAMET, H. “Spatial join techniques”, ACM Trans. Database

Syst., 2007.

[10] SHEKHAR, S., GUNTURI, V., EVANS, M. R., et al. “Spatial big-data chal-

lenges intersecting mobility and cloud computing”. In: Proceedings of the

Eleventh ACM International Workshop on Data Engineering for Wire-

less and Mobile Access, MobiDE ’12, pp. 1–6, New York, NY, USA,

2012. ACM. ISBN: 978-1-4503-1442-8. doi: 10.1145/2258056.2258058.

Dispońıvel em: <http://doi.acm.org/10.1145/2258056.2258058>.

[11] CROMPVOETS, J., RAJABIFARD, A., VAN LOENEN, B., et al. A Multi-

View Framework to Assess Spatial Data Infrastructures. Printed by Dig-

ital Print Centre, The University of Melbourne, Australia, 2008.

[12] BECKER, L., GIESEN, A., HINRICHS, K. H., et al. “Algorithms for Per-

forming Polygonal Map Overlay and Spatial Join on Massive Data Sets”.

In: Advances in Spatial Databases-6th International Symposium, SSD ’99,

Hong Kong. Springer-Verlag, 1999.

[13] BIUK-AGHAI, R. “A mobile GIS application to heavily resource-constrained

devices”, Geo-spatial Information Science, v. 7, n. 1, pp. 50–57, 2004.

ISSN: 1009-5020. doi: 10.1007/BF02826676. Dispońıvel em: <http:

//dx.doi.org/10.1007/BF02826676>.

[14] GÜTING, R. H. “An Introduction to Spatial Database Systems”, VLDB J.,

v. 3, n. 4, 1994.

[15] KRIEGEL, H.-P., BRINKHOFF, T., SCHNEIDER, R. “An Efficient Map

Overlay Algorithm Based on Spatial Access Methods and Computational

Geometry”. In: Proceedings of the International Workshop on DBMS’s

for Geographic Applications. Springer Verlag, 1991.

[16] KRIEGEL, H., BRINKHOOF, T., SCHNEIDER, R. “Efficient Spatial Query

Processing in Geographic Database System”, Data Enginnering Bulletin,

v. 16, pp. 10 – 15, 1993.

[17] ZHU, H., SU, J., IBARRA, O. H. “Toward Spatial Joins for Polygons”. In:

Proceedings of the 12th International Conference on Scientific and Statis-

tical Database Management, SSDBM ’00, Washington, DC, USA, 2000.

IEEE Computer Society.

[18] CÂMARA, G., DAVIS, CLODOVEU E MONTEIRO, M. V. M. Introdução à

Ciência da Geoinformação. INPE, São José dos Campos, SP, 2001.

66

http://doi.acm.org/10.1145/2258056.2258058
http://dx.doi.org/10.1007/BF02826676
http://dx.doi.org/10.1007/BF02826676

[19] BRINKHOFF, T., HORN, H., KRIEGEL, H.-P., et al. “A storage and access

architecture for efficient query processing in spatial database systems”.

In: Advances in Spatial Databases, pp. 357–376. Springer, 1993.

[20] AZEVEDO, L. G., GÜTING, R. H., RODRIGUES, R. B., et al. “Filtering with

raster signatures”. In: Proceedings of the 14th annual ACM international

symposium on Advances in geographic information systems, GIS ’06, New

York, NY, USA, 2006. ACM.

[21] SAMET, H. Foundations of Multidimensional and Metric Data Structures. The

Morgan Kaufmann Series in Computer Graphics, 2005.

[22] DE BERG, M., VAN KREVELD, M., OVERMARS, M., et al. Computational

geometry: algorithms and applications. Springer, 2008.

[23] BECKMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., et al. “The R*-tree: An

Efficient and Robust Access Method for Points and Rectangles”, SIGMOD

Rec., v. 19, n. 2, pp. 322–331, maio 1990. ISSN: 0163-5808. doi: 10.1145/

93605.98741. Dispońıvel em: <http://doi.acm.org/10.1145/93605.

98741>.

[24] ESPERANÇA, C., SAMET, H. “Vertex representations and their applications

in computer graphics.” The Visual Computer, 1998.

[25] XAVIER, A. P. T. T. Junção Espacial de Regiões Poligonais Usando Campos

Escalares. Tese de Mestrado, Instituto Alberto Luiz Coimbra de Pós-

Graduação e Pesquisa em Engenharia da Universidade do Estado do Rio

de Janeiro, Rio de Janeiro, Brasil, 2013.

[26] BORGES, K. A., DAVIS, C. A., LAENDER, A. H. “OMT-G: An Object-

Oriented Data Model for Geographic Applications”, GeoInformatica, v. 5,

n. 3, pp. 221–260, 2001. ISSN: 1384-6175. doi: 10.1023/A:1011482030093.

Dispońıvel em: <http://dx.doi.org/10.1023/A%3A1011482030093>.

[27] PUGH, W. “Skip Lists: A Probabilistic Alternative to Balanced Trees”, Com-

mun. ACM, v. 33, n. 6, pp. 668–676, jun. 1990. ISSN: 0001-0782. doi:

10.1145/78973.78977. Dispońıvel em: <http://doi.acm.org/10.1145/

78973.78977>.

[28] CGAL EDITORIAL BOARD. “CGAL - Computational Geometry Algorithms

Library”. 2014 June. Dispońıvel em: <https://www.cgal.org/>.

[29] FRANK WARMERDAM. “Shapefile C Library”. 2014 June. Dispońıvel em:

<http://shapelib.maptools.org/>.

67

http://doi.acm.org/10.1145/93605.98741
http://doi.acm.org/10.1145/93605.98741
http://dx.doi.org/10.1023/A%3A1011482030093
http://doi.acm.org/10.1145/78973.78977
http://doi.acm.org/10.1145/78973.78977
https://www.cgal.org/
http://shapelib.maptools.org/

[30] ATALLAH, M. J., GOODRICH, M. T. “Efficient Plane Sweeping in Par-

allel”. In: Proceedings of the Second Annual Symposium on Computa-

tional Geometry, SCG ’86, pp. 216–225, New York, NY, USA, 1986.

ACM. ISBN: 0-89791-194-6. doi: 10.1145/10515.10539. Dispońıvel em:

<http://doi.acm.org/10.1145/10515.10539>.

[31] GOODRICH, M., GHOUSE, M., BRIGHT, J. “Generalized Sweep Methods for

Parallel Computational Geometry”. In: Proceedings of the Second Annual

ACM Symposium on Parallel Algorithms and Architectures, SPAA ’90,

pp. 280–289, New York, NY, USA, 1990. ACM. ISBN: 0-89791-370-1.

doi: 10.1145/97444.97695. Dispońıvel em: <http://doi.acm.org/10.

1145/97444.97695>.

68

http://doi.acm.org/10.1145/10515.10539
http://doi.acm.org/10.1145/97444.97695
http://doi.acm.org/10.1145/97444.97695

	List of Figures
	List of Tables
	Introduction
	Spatial Joins
	Spatial join processing strategies
	Map Overlay

	Weighted Vertex Collections
	Weighted Vertex
	Properties and operations on Weighted Vertex Collections
	Scan
	Scan order
	Event processing

	Operations
	Sum
	Value At
	Draw
	Convert
	Scalar Transformation

	The WVC data structure

	Implementation, Tests and Results
	Comments about processing the Map Overlay operations with WVCs
	Discussion of results

	Conclusion
	Bibliography

