
ESTIMATING HAND POSES FROM RGB-D DATA

Pedro de Souza Asad

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Ricardo Guerra Marroquim

Rio de Janeiro

Maio de 2016

ESTIMATING HAND POSES FROM RGB-D DATA

Pedro de Souza Asad

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Ricardo Guerra Marroquim, D.Sc.

Prof. Marcelo Bernardes Vieira, Ph.D.

Prof. Claudio Esperança, Ph.D.

RIO DE JANEIRO, RJ – BRASIL

MAIO DE 2016

Asad, Pedro de Souza

Estimating hand poses from RGB-D data/Pedro de

Souza Asad. – Rio de Janeiro: UFRJ/COPPE, 2016.

XII, 66 p. 29, 7cm.

Orientador: Ricardo Guerra Marroquim

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2016.

Referências Bibliográficas: p. 55 – 59.

1. Estimação de postura. 2. Otimização por nuvem de

part́ıculas (PSO). 3. Câmeras RGB-D. I. Marroquim,

Ricardo Guerra. II. Universidade Federal do Rio de

Janeiro, COPPE, Programa de Engenharia de Sistemas e

Computação. III. T́ıtulo.

iii

Aos que vieram antes.

iv

Agradecimentos

Um trabalho como este é o produto de uma complexa rede de interações. Interações

humanas, interações com o ambiente, interações bioqúımicas, etc. Sua aceitação

culmina na titulação de um indiv́ıduo como Mestre em Ciências, mas o mérito por

sua realização se estende, em maior ou menor grau de evidência, a toda uma comu-

nidade e um planeta, historicamente vivos, em que o mesmo se insere. Por isso, meu

primeiro agradecimento é para todos aqueles que não foram evidenciados no restante

desta seção, que trata das bandas intermediárias, inviśıveis, ou semi-transparentes,

do espectro de participações neste trabalho, e faz isso em uma sequência sem nenhum

compromisso com ordens de magnitude, mas tão somente ao gosto do autor.

A primeira menção nomeada é a meu orientador, Ricardo, agente tão funda-

mental quanto evidente, que demonstrou paciência perseverante diante da minha

indisciplina com prazos, mas nunca deixou de “puxar minha orelha” com a regular-

idade adequada. Vale também dizer que não são muitos os orientadores que estão

dispostos, ou dispońıveis, a sentar ao seu lado para ajudar a depurar seu código

ou a oferecer conselhos sobre suas incertezas profissionais e que tive a rara sorte

de Ricardo ser um deles. Ele reflete bem um espaço querido, o LCG: laboratório

repleto de pessoas, alunos e professores, entusiásticos e prestativos, prontos a te

auxiliar com empecilhos técnicos fulminantes ou a te acompanhar para um lanche

da tarde repleto de conversas deliciosas, que vão da poĺıtica à crônica-ficção da vida

cotidiana.

Este laboratório representa para mim, hoje, o patamar mais ı́ntimo de uma co-

munidade acadêmica ampla que é a Universidade Federal do Rio de Janeiro. Desta,

obtive também o meu grau de bacharel e tenho me beneficiado, há oito anos, de

seu suporte constante para acessar conhecimento, firmar o caráter e fazer mais per-

guntas do que sou capaz de responder. São muitas as pessoas necessárias ao fun-

cionamento desta máquina formidável: professores, alunos, secretários acadêmicos,

bibliotecários, faxineiros, seguranças, administradores, motoristas e outros. A to-

dos, agradeço pelas contribuições infinitesimais e anônimas que viabilizam a vida

acadêmica nos campi.

É imposśıvel andar sem que uma das pernas esteja firme no chão. Por isso,

agradeço à minha famı́lia, porque ajudou-me a firmar a primeira perna e a saber,

v

mais ou menos, onde pisar com a segunda. E porque sei, apenas sei, que estão

áı pro que der e vier. Nos anos mais recentes, para a sorte de todos, temos sido

enriquecidos pela presença alegre e irreverente de minha companheira. Obrigado,

por ser o contraponto ideal. Agradeço à presença de alguns amigos no dia da minha

defesa e à torcida de tantos outros que tinham compromissos inadiáveis, ou que

simplesmente não iam entender coisa alguma. Com muitos deles, compartilho a

relação de amor e ódio com os computadores, mas com todos, compartilho a alegria

de viver com pessoas diferentes que se respeitam, auxiliam e enriquecem.

Outra menção importante segue para a comunidade open source. Formada por

um grande número de entusiastas ao redor do globo que trabalha, na maior parte

das vezes, em seu tempo livre, este grupo formidável de desenvolvedores inventa (e

às vezes, reinventa) ferramentas sensacionais, sem as quais tudo seria mais dif́ıcil e

(muito) caro.

Meu último agradecimento é para você, leitor, por se importar em ler estas

considerações e pelo interesse neste trabalho. Através de você, desejo sorte a todos

os que virão e escreverão nas páginas em branco.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

ESTIMANDO POSTURAS MANUAIS A PARTIR DE DADOS RGB-D

Pedro de Souza Asad

Maio/2016

Orientador: Ricardo Guerra Marroquim

Programa: Engenharia de Sistemas e Computação

A análise de movimentos humanos baseada em visão computacional é uma área

de pesquisa ativa, devido às suas numerosas aplicações e problemas desafiadores

que, em geral, não possuem soluções genéricas. Dentro deste amplo domı́nio, a

análise de movimento das mãos se destaca como uma área de mérito próprio, devido

à notável importância que elas exercem em múltiplas atividades humanas, como

na operação de interfaces humano-máquina, comunicação gestual e linguagem de

sinais, para mencionar algumas. Este trabalho se desdobra sobre avanços recentes

em visão computacional para a detecção de posturas manuais, no caso particular

de câmeras RGB-D. Buscamos reproduzir e aprimorar uma técnica existente que

aplica otimização por nuvem de part́ıculas para encaixar um modelo articulado com

mais de 20 graus de liberdade a uma mão em movimento observada a partir de um

sensor Kinect. Como resultado, constrúımos um sistema de rastreamento de mãos

minuciosamente documentado que difere do trabalho original em alguns aspectos,

apesar de manter a mesma estrutura geral. Nosso sistema produz resultados satisfa-

toriamente precisos, embora seu desempenho tenha sido consideravelmente inferior,

devido a restrições de tempo que impediram a otimização de etapas de transferência

e conversão de informações.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

ESTIMATING HAND POSES FROM RGB-D DATA

Pedro de Souza Asad

May/2016

Advisor: Ricardo Guerra Marroquim

Department: Systems Engineering and Computer Science

Computer vision-based human motion analysis is an active research area, due to

its many applications and challenging problems and due to the lack of generic solu-

tions. Inside this broad domain, hand motion analysis arises as a specialized field

on its own merit, notably because hands play an important role in many human

activities, such as in operation of human-computer interfaces, gestural communica-

tion and sign language, to mention a few. This work develops on recent advances

of computer vision techniques for hand pose estimation, in the particular case of

RGB-D sensors. We sought to reproduce and improve an existing technique that

applies particle swarm optimization to fit an articulated hand model with more than

20 degrees of freedom onto a performing hand observed from a Kinect sensor. As a

result, we built a thoroughly documented hand tracking software that differs from

the original work in some aspects, although keeping the same general layout. It

produces satisfactorily accurate results, although its performance was considerably

lower, due to time constraints that prevented an optimization of information transfer

and manipulation phases.

viii

Contents

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Objectives . 2

1.2 Methodology . 3

1.3 Results and contributions . 4

1.3.1 Source code . 5

2 Related work 6

2.1 Vision-based hand pose estimation 6

2.2 Model-based hand pose estimation 7

2.2.1 Hand modeling . 8

2.2.2 Kinect-based pose estimation 9

2.2.3 Skin detection and hand segmentation 10

2.3 Overview of main references . 10

2.3.1 Hand kinematics modeling . 12

2.3.2 Hand shape modeling . 16

2.3.3 Hand detection . 16

2.3.4 Pose estimation . 19

3 Method description 22

3.1 Acquisition and preprocessing . 22

3.2 Hand detection . 24

3.2.1 Skin detector . 25

3.2.2 Skin classifier training . 29

3.2.3 Hand isolation . 30

3.3 Hand modeling . 33

3.3.1 Kinematics modeling . 33

3.3.2 Shape modeling . 35

3.4 Hand rendering . 36

ix

3.5 Pose estimation . 38

3.5.1 Computation of generations 38

3.5.2 Tracking initialization . 40

4 Discussion 42

4.1 Experiments . 42

4.2 Analysis . 45

4.2.1 On the effectiveness . 45

4.2.2 On the efficiency . 46

5 Conclusion 50

5.1 On the results . 51

5.1.1 Possible immediate improvements 51

5.1.2 Limitations . 52

5.2 Contributions . 52

5.3 On future directions . 53

Bibliography 55

A The Kinect device 60

B Parameters 62

C Demonstrations 65

x

List of Figures

2.1 Overview of the pose estimation system developed in the main reference. 12

2.2 Right hand skeleton and main bone names. 13

2.3 Degrees of freedom most commonly presented in kinematic hand models. 14

2.4 Our right hand shape model . 17

2.5 Skin blobs produced during hand detection. 18

3.1 Overview of our system modules . 23

3.2 Kinect video frame before and after median filtering 23

3.3 Improved view of a Kinect depth frame 24

3.4 The UV chromaticity plane and the skin class boundaries. 28

3.5 Skin colors histograms in the FSD and IBTD datasets. 30

3.6 Connected component labeling on the GPU. 31

3.7 Skin blobs produced during hand detection. 32

3.8 3D primitives employed in the assembly the hand model. 35

3.9 Full forward kinematics tree, with joints and shapes. 36

3.10 Initial hand pose overlays the image that was used for configuring it. 41

4.1 Some auxiliary debug windows . 43

4.2 Example frames from our test video sequences. 44

4.3 Rapid convergence at initialization 45

4.4 Tracking fail and recovery . 47

4.5 Various poses tracked by our method 48

4.6 Average time per frame spent on each module, except optimization . 48

4.7 Average time per frame spent on each phase of optimization 49

A.1 Depiction of a Kinect Sensor. 60

B.1 Initial hand pose for tracking . 64

xi

List of Tables

2.1 Static constraints on finger DOFs . 16

3.1 Summary of FSD and IBTD datasets. 29

3.2 Components of the pose vector. 34

A.1 Kinect depth camera intrinsic parameters 61

B.1 Gaussian skin model parameters . 62

xii

Chapter 1

Introduction

Humans move. In fact, most living things move in some way. From the small cel-

lular structures that propel many types of bacteria through liquid means, passing

by the various tropic movements that plants exhibit, to the complex musculoskele-

tal systems possessed by vertebrates, the ability to move across the ambient is an

evolutionary strategy that has long enabled organisms to interact with one another

and with their habitats in intricate and diverse ways. During the course of human

history, however, movement has not only been regarded as a vehicle for survival-

related activities, but also as an ideal of transcendence and social accomplishment,

influencing and being influenced by the development of culture. Nonetheless, in mu-

sic, dancing, sports and martial arts, for instance, movements must be performed in

specific ways in order to bring a sense of adequation, joy or fulfillment.

Not surprisingly, the automatic understanding of human motion by computers

has been an active research area for decades. Some notable applications include, but

are not limited to: medical diagnosis support, biomechanics research for the pur-

poses of therapy and sports engineering, human-computer interaction, automated

surveillance, robot vision and learning, and digital entertainment. The plethora of

imaginable applications in this area is only matched, in numbers, by its challenges.

Most existing solutions are tailored to particular conditions of applicability, environ-

ment, precision needs, motion restrictions and so on. For instance, motion analysis

using special clothes with attached magnetic sensors or colored markers that are

detected by cameras is very popular in film making due to its precision, but re-

quires complex equipment setups that are unsuitable for the purposes of automated

surveillance or casual entertainment.

The present work approaches human hand motion capture as a computer vision

problem, in which an end consumer camera is used to observe a performing hand

and an articulated hand model is fitted to the observation. Said device is a Kinect

for Xbox 360 sensor, a low cost RGB-D camera created for the purpose of inter-

active digital entertainment that has received a lot of attention from the research

1

community since its launch in 2010, because it provides not only the RGB color

components for every pixel, but also a depth map (which stands for the D in RGB-

D) that encodes orthogonal distance to the image plane, a very valuable information

for computer vision algorithms. Our work sought, in the beginning, to reproduce

and improve an existing method in the literature that applied the stochastic op-

timization algorithm known as particle swarm optimization (PSO) to obtain the

hand model parameters in this scenario. A number of simplifications and adapta-

tions were adopted to reduce implementation effort and provide a solution to details

the reference papers were vague about. As a result, we developed a functional hand

tracking system, that stems from the original work in a number of ways, reaching

reasonable accuracy and robustness. Both an extensive quantitative evaluation of

our method and a comparison to the original were not possible due to time con-

straints, rendering any claims about actual improvements pointless. However, we

believe this study to be a relevant contribution to vision-based hand tracking liter-

ature, by confirming the viability of the previously existing framework, even under

small variations, making some bottlenecks and limitations evident and providing an

open source code 1 accompanied by the thorough and self-contained documentation

that we believe this text to be.

This document is structured as follows: In the rest of this chapter, we discuss the

motivation, scope, methodology and contributions of this work; Chapter 2 presents

an overview of the related research literature, with a special emphasis on the method

that served as our main reference; Chapter 3 details the implementation of our

system; Chapter 4 presents a qualitative discussion of our system’s accuracy and a

quantitative measure of its performance; Chapter 5 discusses possible solutions to

our main issues and suggests possible research directions in which this work might

be further extended.

1.1 Objectives

We are motivated by the ideal of producing a reliable, precise and efficient hand

motion tracking system that would be able to rival or even surpass a person’s ability

to deduce hand poses from visual observations. Such a system would, as mentioned

before, allow many types of rich interactions and cooperation between human beings

and computers. However, as the current state of the art in hand pose estimation

suggests, such a goal is far from accomplishment. That being said, with no particular

applications in mind, we decided to investigate an existing approach with the intent

of reproducing it and, if possible, contributing to its improvement.

The chosen method, as mentioned before, was published by Oikonomidis et al. [1],

1Details on Section 1.3.1.

2

and consists in tracking a single hand by fitting the parameters of an articulated

hand model with more than 20 degrees of freedom to the observed color and depth

input data provided by a still Kinect sensor. We chose their work because it is

reasonably accurate, as reported in their paper and suggested by the demonstration

videos in its supplementary material [2] and because its best performance is sub-

real time (about 15 Hz, compared to the Kinect’s frame rate of 30 Hz). The last

point reveals their method is computationally expensive, but also implies that subtle

contributions might be able to lift its performance to the real time level. Another

potential improvement regards hand pose stability, since the tracked poses tend to

present jerky oscillations, even when the performing hand is still.

1.2 Methodology

We took a mostly experimental approach to the development and testing of our hand

tracking system. The work we attempted to reproduce was divided in a number of

steps, detailed in Section 2.3, and we implemented each one of them, from image

acquisition to pose optimization. Every newly developed functionality was tested

for correctness against third party datasets or video sequences recorded in our labo-

ratory, as described in Section 4.1. When fixing errors or adjusting parameters, we

aimed at approximating the observed hand poses in our videos, assessing the result’s

quality by visual inspection.

As mentioned before, we initially planned to reproduce an existing system before

investigating possible improvements. However, faithful reproductions in computer

vision are notoriously difficult, since apparently irrelevant environmental conditions

and seemingly secondary parameters may considerably impact the quality and even

the viability of the final solution, a fact that is frequently overlooked in published

papers. This led us to: (a) adopt different parameters than the reference work

for various parts in order to obtain consistent results; (b) simplify the algorithmic

treatment where our scenario constraints allowed to and (c) develop custom solu-

tions to details that were not clearly explained in the references. The three most

distinctive aspects of our system are: (a) skin segmentation, which is approached

by Section 3.2.3; (b) the adopted articulated hand model, that includes less DOFs

than the original work and (c) a slightly different formulation of the objective func-

tion used for evaluating pose hypotheses, which is described in Section 3.5.2. All

configurable system parameters are described in Appendix B.

A fundamental discipline of software development is planing the system architec-

ture. A carefully planned architecture allows easy inclusion of additional functional-

ity, replacement or removal of old modules and behavior multiplexing by combining

exchangeable components. The detailing of an architecture usually leads to adopt-

3

ing multiple design patterns, that is, general solutions for common situations and

problems in programming. Most literature on software architecture and design pat-

terns is focused on enterprise and market solutions and not on academic necessities,

where we perceive the adoption of such disciplines to be very little disseminated,

in the present time. For the most part, we followed and ad-hoc approach to the

architecture of our system, but applied some of the classical design patterns in the

book [3] to improve the system’s structure and the code’s readability.

Our system was implemented mainly in the version 11 of the C++ language [4],

a language that is commonplace in systems programming due to its performance fea-

tures and extensive library support. The depth maps used to evaluate pose hypothe-

ses during the optimization phase, as explained in Section 3.4, were generated by

rendering a hand mesh model with custom vertex and fragment shaders in OpenGL

Shading Language (GLSL) 4.0 [5], an open and extremely portable standard for 3D

graphics programming. Finally, the GPU programs used for skin segmentation and

hand detection, explained in Section 3.2.3, and for hypothesis evaluation, explained

in Section 3.5.2, were implemented with the NVIDIA CUDA toolkit 7.5 [6], which

permits better usage of the NVIDIA GPU our test machine was equipped with. The

references provided in this paragraph are for extensive programming guides of these

languages that we used frequently during this study. The reader seeking shorter,

comprehensive introductions to these technologies may find many such materials in

the web.

1.3 Results and contributions

The result of our work is a functional hand tracking application that is able to

fit a 22 DOF articulated hand model to a single performing hand observed with a

Kinect sensor. Our application allows to visualize the input video and depth frames

overlaid with the rendered hand model in the tracked pose. It was based on an

existing optimization-oriented approach by Oikonomidis et al. [1] and it differs from

their method regarding hand detection and isolation, hand model constraints and a

few more algorithmic details in later phases.

From an empirical perspective, visual inspection indicates that our implemen-

tation gives reasonably accurate results. Furthermore, our method starts tracking

from an open palm pose in a fixed position in space that, in principle, may be mis-

aligned with the performing hand, but nonetheless was able to translate the model

to the proper location and alignment in all tested video sequences. It can be noted

from our video sequences that rapid motion and hand poses in which the palm

plane is nearly perpendicular to the camera’s image plane are unfavorable to our

method, although we believe this restriction to be inherent to the formulation of the

4

optimization phase, as with the original work.

Quantitative evaluation in this area is usually performed by evaluating the target

method against a synthetic dataset, due to the unavailability of annotated datasets

of real hand motion. Such approach was followed by the reference work, but it

does not detail how to synthesize motion sequences that reflect plausible motion.

For that reason and due to time constraints, we provide no quantitative evaluation

of our method, nor a comparison against the other one. In Chapter 4, we detail

the experiments we performed and provide a quantitative measure of our system’s

performance. Being very close in structure to the reference work, we believe this

performance evaluation to be a valuable information for similar implementations.

Our schedule did not allow to focus extensively in optimizations and hence, our

system did not reach desired performance, falling considerably behind the reference

work in the final evaluation. However, one of our late analysis, as explained in

Chapter 4, showed our major bottleneck was an inefficient conversion of rendered

depth values during particle evaluation phase that could be accelerated with trickier

usage of the graphics programming APIs involved, meaning our implementation is

indeed close to obtaining comparable performance.

Finally, we believe this detailed document to be a valuable resource for imple-

mentations of similar systems. Being, in many senses, a variation of the reference

work, it can guide the implementation of other derivative works. Our source code

was also published in open source terms, meaning it may contribute to future re-

search by providing a starting point or a reference for comparison. We furthermore

intend to keep developing this technique and publish additional improvements to

the code under the same terms.

1.3.1 Source code

The source code’s development history was recorded with the git revision control

system and its latest version can be found at

https://gitlab.com/psa-exe/hand-tracking

It is released under the MIT license (see [7] for more details), which is included with

the code. The latest version of the code up to the conclusion of this text has version

number 0.1 and is marked with the corresponding v0.1 tag in the repository.

5

https://gitlab.com/psa-exe/hand-tracking

Chapter 2

Related work

Marker-based human pose estimation using body markers and colored gloves, as

usually applied to motion capture, provides good overall accuracy. However, these

devices are usually expensive and cumbersome, requiring users to break the inter-

action flow in order to wear them and limiting their application in some scenarios,

such as automated surveillance and robot vision. Thus, obtaining reliable computer

vision-based solutions for this problem is considered important. In this chapter,

we provide an overview of computer vision-based human hand pose estimation ap-

proaches, with emphasis on methods that provide continuous tracking of a fully

articulated hand model with the aid of a Kinect depth sensor. We also describe

some studies in the area of skin detection that are relevant to our work. The last

section is dedicated to describing our main references in more detail.

2.1 Vision-based hand pose estimation

Hands constitute a special case of the broader field of human motion analysis that

presents its own challenges, such as highly dynamic movement, many degrees of

freedom and frequent self occlusions, compared to other body parts. A comprehen-

sive and singularly important survey on vision-based hand pose estimation research

published until 2007 is given by [8]. Since human skeleton information is frequently

used as input for gesture recognition systems, there are more surveys that cover

the higher level applications of hand gesture recognition, such as [9]. Since we fo-

cus on pose estimation, regardless of the application, we also point at [10], which

reviews general computer vision enhanced by the Kinect sensor, but dedicates a

whole section to the latest advancements in hand pose recognition using this device.

Throughout this chapter we also review other relevant and recent studies in this

area that are not covered in any of these surveys.

The typical taxonomy of human pose estimation literature[8, 9] divides tech-

niques in three main categories: (a) appearance-based (or discriminative), (b) model-

6

based (or generative) and (c) hybrid. Appearance-based methods rely on machine

learning frameworks, such as random forests and neural networks to map a set of ob-

served features to a discrete pose space. They usually require an extensive training

phase where numerous pairs of ground truth pose labels and corresponding observed

features must be supplied, but once trained these methods are able to operate with

real time performance. By performing frame-wise recognition, thy become resilient

to estimation errors, since an incorrect pose is not propagated through the tracking

sequence. On the other hand, they are unlikely to extrapolate their training sets

and predict completely unknown poses. Moreover, pose transitions are not smooth.

Model-based methods are optimization-driven, as they iteratively improve a one

or multiple hypotheses by reducing their estimated distance to the observed fea-

tures. Successfully applied optimization algorithms include Gauss-Newton, bounded

linear programming, spring-force systems, simulated annealing, genetic algorithms

and particle swarm optimization. The elevated dimensionality of highly articulated

hand models (usually 20 to 30 degrees of freedom per hand) raises the computation

costs of such algorithms and requires careful design and incorporation of domain

information, such as joint rotation constraints and the temporal coherence assump-

tion, to reach acceptable performance and avoid local minima. On the other side,

infinite combinations of pose parameters are possible. Temporal coherence is an

important factor for performance improvement and smooth transitions that can be

achieved by initializing the set of hypotheses from the previously deduced pose. On

the other hand, it also renders them fragile to accumulation of tracking errors. Due

to the size of the search space, initialization is non-trivial, but can be achieved by

performing a predefined pose or with the aid of appearance-based recognition, for

instance. In the next section, we detail model-based estimation.

The third category, that of hybrid methods, encompasses approaches that at-

tempt to bring together the strongest features of the generative and discriminative

worlds. The discriminative portion may be responsible for initialization, recovery,

pruning of the search space or feature extraction while the optimization part is

usually responsible for refining the coarse estimates.

2.2 Model-based hand pose estimation

In the past, one-shot hand pose recognition has been achieved with the help of

a glove with colored markers and by solving an inverse kinematics problem, where

joint motion is highly constrained[11]. Model fitting was driven by a spring-like force

model in which some characteristic model points (consisting mainly of fingertips)

were attracted to their likely spatial locations, estimated from a pair of calibrated

cameras through feature detection.

7

Other works apply stochastic optimization to find the pose that better fits the ob-

servations. Particle Swarm Optimization (PSO), for instance, has been successfully

applied for finding the 3D configuration of one [1, 12] and even two [13] interacting

hand models. An objective function is applied to measure the discrepancy between

each particle (model pose hypothesis) and the observed depth map. Then, every

particle is updated according to its momentum, plus a random and a drifting com-

ponent towards the current best particle at every iteration. This type of PSO-based

technique may be even tuned to track a hand interacting with a simple rigid ob-

ject [14]. PSO has also been successfully applied to other pose estimation problems

such as head pose estimation[15].

Another course of action in estimating the hand pose is combining optical flow

with salient points in order to obtain good descriptors for the fingers, since they

usually present the problem of great self-similarity [16].

2.2.1 Hand modeling

One of the biggest issues with generative estimation of hand postures based on global

search is that the high dimensionality of the search space (usually 20 to 30 degrees

of freedom for a single hand) considerably raises the computational costs of finding

a good solution. Besides, one incorrectly estimated parameter may cause an overall

anatomically implausible configuration, since the articulated parts are hierarchically

connected. To address both issues, some methods[11, 17, 18] apply constraints on

joint movements to prohibit anatomically implausible motion, enforce naturalness

of motion or both.

Applying finger motion constraints may drastically reduce the search space, but

sometimes the computational requirements become a serious drawback[17]. More-

over, whereas the simplest constraints may be represented as equations and many as

inequalities, many others simply cannot, specially the ones that enforce natural mo-

tion (produced solely by the hand’s own motor structures under healthy conditions,

and not involving external agents such as objects or other hands, for instance). In

this case, dimensionality reduction may be employed to learn the subspace of natural

motion from a set of training poses.

Some works go even further in the recreation of a realistic hand by modeling

bones, muscles, skin and anatomic motion [19, 20]. Such highly realistic models are

very suitable for augmented reality and animation systems, but present an exagger-

ated level of detail for applications where only articulated tracking is of importance.

Some works prune the search space by roughly identifying the position and/or

orientation of the palm before applying a tight estimation of the palm and finger

configurations[11, 21]. In [21], a small accelerometer is attached to the person’s hand

8

to obtain its orientation.

2.2.2 Kinect-based pose estimation

The arrival of the Kinect sensor[22] in 2010 made incorporating depth information

into computer vision pipelines easier and cheaper than traditional stereo or Time

of Flight cameras [10]. Many computer vision domains have since benefited greatly

from this additional spatial dimension, including indoor scanning applications, per-

son detection, gesture recognition, activity recognition and object tracking, for in-

stance. An excellent survey on computer vision methods enhanced with Kinect,

including pose estimation systems, is given in [10]. For a survey on depth-enhanced

human motion analysis, which includes other types of sensors, the reader is referred

to [23]. A brief description of the sensor’s architecture is given in Appendix A.

One of the seminal papers in Kinect-based human pose tracking, which reveals

the method behind the device’s Software Development Kit (SDK), is based on a

discriminative classification of body parts at pixel-level [24]. It describes a random

forest classifier that maps a set of local depth-derived features into body part labels.

After per pixel labeling is performed, mean shift mode finding is applied to estimate

the joint positions, which constitute the output of the method. The classifier is

trained with a huge exemplar set of actors of different body types performing varied

actions, rendering the system robust against body shape variations and making it

suitable for many entertainment scenarios. The resulting algorithm is fast (able to

cope with the Kinect’s framerate) and resilient, since it operates on individual frames

separately. However, this method outputs a coarse skeleton which is not suitable

for hand pose tracking, since the greatest level of detail for the hands contains only

the palm center (end point) and wrist (joint). Another disadvantage is that it took

an extensive training set to train the body part classifier.

Two systems modify the previous approach to the context of hand pose recog-

nition, by training a random decision forest with synthesized depth images of an

articulated hand model, which classifies depth pixels as belonging to one of 21 man-

ually chosen hand parts[25, 26]. The latter study improves on the former by achiev-

ing realtime performance and better accuracy. Although a quantitative measure

of the system’s accuracy is not given, when combined with an SVM (support vec-

tor machine) module the resulting system achieves the ten digits of American Sign

Language with correct gesture detection rate of 99.9%.

Another part-based hand pose recognition method uses distance transform to lo-

cate the palm center and fingertips and determine if they are extended or bent [27].

However, this simplified finger pose model does not translate into rotation parame-

ters for an articulated model, rendering this method more useful for simple gesture

9

recognition and mostly limiting its application to frontal hand poses.

2.2.3 Skin detection and hand segmentation

A fundamental step in hand pose tracking is segmenting the hands from the rest of

the scene. Various simplifying conditions are usually assumed, such as the hands

being the closest body part to the camera or the background being static. When

depth information is available, it may be used alone or in conjunction with RGB

data to segment the hands [28–30]. Nevertheless, it is also possible to use only color

information. Video-based hand segmentation usually resorts to color-based skin

segmentation and given the simplifying conditions, it achieves satisfactory results.

The skin segmentation problem is usually formulated as a two-class separation

of image pixels, where the possible classes are skin and non skin. Various classifica-

tion strategies are possible, including, but not limited to: simple range checking (a

pixel is considered to be skin if, and only if its color components are within prede-

fined ranges); Bayesian filtering based on color histograms; simple and multimodal

Gaussian classification and several neural network approaches. Consult [31] for a

comprehensive survey on color-based skin classification methods.

Except for non-parametric approaches, such as histogram-based ones, classifica-

tion methods, such as Gaussian and range checking, require specific color representa-

tions to work. Surprisingly, the skin colors of different ethnic groups have been found

to differ more in luminance than in chrominance [32], which led many researchers

to adopt color spaces in which the luminance component is separated (HSV, YUV

and Lab, for instance) and can be discarded. Although discarding the illumination

information improves robustness against lighting variations, it has been found that

it degrades the accuracy of predictions [31]. Nonetheless, color spaces like RGB and

CIE-XYZ may be effectively employed in skin detection. A common practice when

using the RGB color space is to normalize the (r, g, b) color components, such that

r+ g+ b = 1, which reduces illumination dependency and allows for dimensionality

reduction, since one of the components becomes redundant. Comparative studies of

color spaces used in skin classification can be found in [33–35].

2.3 Overview of main references

In 2011, [1] presented a markerless vision-based method for retrieving the full 3D

articulated pose of a moving human hand from a RGB-D camera by means of Particle

Swarm Optimization. This method segments the observed hand and compares its

skin and depth information against synthesized images of an articulated hand model

in several hypothesized configurations, or particles. These candidate solutions are

10

improved over a fixed number of iterations and the best ever matching pose for

the present frame is chosen. Temporal coherence is achieved by using each frame’s

solution to spawn the particle swarm for the next one.

We give a brief overview of the system as follows: (a) hands are detected by

means of color-based skin segmentation, yielding a binary mask of observed skin

pixels SO; (b) based on the estimated hand position for the previous frame, the

input depth is filtered to remove irrelevant pixel depths, and an observed depth map

DO is obtained; (c) the particle swarm is initialized with pose hypotheses derived

from the solution of the previous frame; (d) each hypothesis h applied to the hand

model and rendered with the estimated camera parameters for the Kinect depth

camera, producing a rendered depth map DR(h); (e) each hypothesis is compared

against the observation O = (SO, DO) by means of an objective function F (h, O);

(f) particle positions and velocities are updated according to PSO algorithm and

steps (d)-(f) are repeated for a fixed number of iterations. At the end of the last

iteration, the best hypothesis produced is taken as the final solution for that frame.

This high level view of the system is demonstrated by Figure 2.1.

This algorithm has been extended to work with multiple hands [13] and with

hands interacting with objects[14]. As with most model-based approaches, this

method still requires careful initialization and is prone to error accumulation if a

bad pose is chosen at some time, specially under fast motion. Nevertheless, it

presents a valuable indication that accurate, smooth and efficient model-based hand

pose tracking through particle swarm optimization is, to some degree, feasible, with

the currently available hardware platforms. It is the main reference for our work,

hence it will be further described in the current section, together with closely related

studies. We start by describing the modeling of hand kinematics, proceed to shape

representation, then hand detection and finally, to pose estimation.

11

Kinect
camera

Preprocessing and
hand detection

PSO

Skin
detector

RGB

Depth

Particle
swarm

Pose
hypothesis h

Observed
skin (o_s)

Final
pose

Observed
depth (o_d)

Rendered
depth (r_d)

Objective
function

Depth
filtering

n < 25

Particle ranking
and update

Pose
rendering

Swarm
initialization

Figure 2.1: Overview of the pose estimation system developed in the main refer-
ence. Parallelograms indicate input, output and intermediate data, rectangles indi-
cate modules/steps performed by the algorithm and the diamond indicates iteration
control. Light blue boxes indicate data or steps that occur only once per frame.
Dashed arrows indicate information that is used as feedback in the next frame.
Rectangles with a blue outline indicate steps that are computed on the GPU.

2.3.1 Hand kinematics modeling

The human hand is a sophisticated biomechanical structure comprised of 27 bones:

14 phalanxes (the finger bones), 5 metacarpals (the bones that form the palm center

and connect to the phalanxes) and 8 carpals (the ones that connect the metacarpals

to the wrist). Figure 2.2 shows a picture of a right human hand skeleton with the

names of the main bones [36].

12

Metacarpals

Carpals

Distal
phalanxes

Medial
phalanxes

Proximal
phalanxes

Proximal
phalanx

Distal
phalanx

Figure 2.2: Right hand skeleton and main bone names. This is a free-hand re-
production of the skeleton picture in [11]. asçdfhaçs qwerqkçlwje q qwlekrjqwlke
qwlekrjhqwlekr qwlekrjhqwelrk qwelkrjhqwer qlkwejrhqlwekr qwe rlkqjwehr qwer
lkqjwehr

From an anatomic perspective, joints are contact surfaces between adjacent bones

that allow them to rotate around one another [37]. From a kinematic perspective

that is usually adopted [8], the hand may be modeled as a tree-like structure of

undeformable parts connected at articulation points that allow for rotating around

up to three orthogonal axes. From this last point of view, joints correspond to

rotation centers and it is as such that we employ the term joint for the rest of this

text. Figure 2.3 shows the joint names for the human hand and displays how many

degrees of freedom (DOFs) are adopted for each in the main reference. While most

of the carpals and metacarpals present little to no perceptible reciprocal motion at

all (with the notable exception of the thumb metacarpal) and are left as part of a

rigid palm part, the phalanxes are capable of very intricate movements. The most

noticeable movements are those of flexion/extension (FE) and adduction/abduction

(AA): the first revolves around axes that are parallel to the image plane and brings

the phalanxes closer to or further from the palm; the second is only possessed by

the index through little metacarpophalangeal and thumb carpometacarpal joints

and rotates around axes perpendicular to the image plane, bringing adjacent fingers

closer to or further from each other. Rotation around a third orthogonal axis, usually

referred to as torsion, is too small and is usually ignored. In the case of the thumb,

the FE axis is not parallel to the image plane and the AA axis is not perpendicular

to it. Rather, the thumb joints’ coordinate systems are slightly rotated around their

torsion axes by an equal amount for all of them. The FE axes of one finger are

always aligned, making each finger a planar manipulator.

13

Carpometacarpal
Joint (CMC)

Interphalangeal
joint (IP)

2

2
2 2

2

1
1 1

1

1

1
1

1

1

1

6
Flexion/
Extension
(FE)

Adduction/
Abduction
(AA)

Torsion

Metacarpophalangeal
Joint (MCP)

Proximal
Interphalangeal
Joint (PIP)

Distal
Interphalangeal
Joint (DIP)

Figure 2.3: Degrees of freedom most commonly presented in kinematic hand models.
The number of DOFs is shown close to each joint and non-moving bones are painted
in a darker shade of gray than the moving ones. AA and FE axes are depicted in
blue and red, respectively, for the little finger’s MCP and PIP joints and are omitted
for the remaining joints, because joints with the same number of DOFs have similar
axes. The axes for the thumb joints appear shorter, to suggest that the AA axes of
the thumb joints’ are not parallel to the other fingers’. A set of three axes is shown
next to the wrist, which, including 3 translation coordinates, contains 6 DOFs.
The key on the bottom right shows the names of the joint movements next to the
respective color-coded rotation axes.

The most difficult finger motion to be modeled is that of the thumb car-

pometacarpal joint, because, from an anatomic perspective, it actually rotates

around two non-orthogonal and non-intersecting axes [11], unlike the presented AA-

FE orthogonal system, allowing the thumb to face the palm when gripping objects.

Some works apply include the torsion movement to solve this issue, while others

(such as the main reference) assume a more restrictive and less realistic model with

indeed two orthogonal axes (like the other fingers’ metacarpophalangeal joints). Fi-

nally, it is also possible to assume three orthogonal axes by modeling the torsion

angle as a linear combination of the AA and FE angles. The resulting typical hand

model has 26 or 27 DOFs, depending on the choice for the thumb [36].

The highest node in the movement hierarchy corresponds to the wrist, that is,

the joint between the hand and the forearm, which takes 3 translation DOFs to be

placed in space and another 3 DOFs to describe the hand orientation. Although the

hand is not actually capable of unrestricted 3-axial rotation relative to the forearm,

when the arm kinematics are not considered separately, the resulting wrist model

has these total 6 DOFs.

As Figure 2.3 indicates, the most commonly used kinematic models allow for up

to 20 or 21 degrees of finger motion (although more are possible), depending on the

14

joint type used for the thumb CMC joint. But the complex structure of the human

hand, albeit highly articulated, also causes its movement to be very constrained.

Hence, under the assumption of realistic motion, it is reasonable to restrict the

joint movements as a way to avoid implausible poses and reduce the size of the

search space. The set of all possible joint configurations, considering the adopted

constraints, is called pose space.

According to [11], hand part motion may be either active or passive. Active

motion of any part may result only from the sole action of muscles and tendons

connected to that part or from the chained active motion of its ancestor parts.

Passive motion, on the contrary, includes motion performed under the influence of

external forces, such as twisting fingers or bending them backwards with the help of

another hand or by pressing against objects, for instance. Active motion constitutes

a subset of passive motion, as the latter allows for a much greater motion amplitude.

Joint constraints for regulating both types of movements were classified as ei-

ther static or dynamic by the same authors and a third type of constraint that we

will call natural was described by [17]. Static constraints correspond to permitted

value ranges for joint angles, and may be represented by inequalities of the form

θmin ≤ θ ≤ θmax. Dynamic constraints model the movement dependency between

moving finger parts or adjacent fingers and reflect the overlapping action of muscles

and tendons and their limited flexibility. The facts that most people are unable bend

the little finger without also bending the ring one or that it is usually hard to bend

or extend any distal phalanx without doing the same with the corresponding medial

phalanx are examples of dynamic constraints. Dynamic constraints also regulate

how one finger may limit the static amplitude of adjacent fingers even further when

it moves. Natural constraints have not received much attention in the literature,

as they correspond to subtle relations among moving fingers that cannot be easily

described in closed equation/inequation form. A possible way to approach them is

applying machine learning techniques to learn the subspace of natural motion from

glove-captured motion data [17]. Finally, we note that static constraints consider-

ably reduce the parameter ranges, while some dynamic constraints may be used to

reduce these ranges further and others to remove redundant dimensions. Since only

static constraints are used by the reference method, we defer a deeper discussion of

dynamic constraints until Chapter 3.

Another important aspect of hand kinematics in hand modeling are the causes

of finger motion. One possibility is to model the mechanics of musculotendon inter-

action with bones and move fingers as a result of applying forces to certain muscles,

which has been demonstrated in the context of realistic hand animation [19]. An-

other approach consists in applying spring-like forces to the model fingertips in

order to attract them to their estimated spatial positions and estimate the joint

15

MCP PIP DIP
θAA θFE θFE θFE

[−15◦, 15◦] [0◦, 90◦] [0◦, 110◦] [0◦, 90◦]

Table 2.1: Static constraints on finger DOFs The same constraints as in [17] are
presented for the index, middle, ring and little fingers. The thumb CMC joint has
the same constraints as the other finger’s MCP joints and its MCP joint has no
adduction/abduction movement and the flexion amplitude is the same as the other
finger’s PIPs.

parameters through inverse kinematics of the finger chains [11], which assumes that

the palm location and orientation and the fingertip positions may be estimated di-

rectly from the image. A third possibility is to ignore the causes of motion and

adopt specific strategies for exploring the pose space, which is the usual choice for

optimization-based pose estimation algorithms, such as the main reference.

In [1, 13, 14], no twisting of fingers is considered, the metacarpals are fixed and

the thumb CMC joint is modeled as a saddle-like joint (2 DOFs). Besides, only

static constraints similar to the ones presented in [17] and summarized in Table 2.1

are considered. Interpenetration of adjacent fingers is not dynamically constrained,

but rather penalized by the objective function formulation. Their resulting hand

model has 20 finger DOFs that, combined with the 3D position and orientation of

the wrist, the latter represented as a quaternion, constitutes a 27 dimensional pose

space.

2.3.2 Hand shape modeling

Hand shape models include triangle meshes, quadrics, B-spline surfaces and even

more complicated mesh models that allow for realistic skin deformation [19, 20].

However, the shape model employed by the main reference is geometrically simple:

it is assembled from 37 triangle meshes, 15 being triangulations of cylinders and 22

of ellipsoids. In the present work, we implemented an analogous model using the

same types of meshes for each respective hand part. Our model is further described

from a kinematic point of view in Section 3.3.2, but we present it here in Figure 2.4

as part of the current discussion.

2.3.3 Hand detection

In [1], a single hand is tracked, and it is assumed to be the closest skin-colored

object moving in the camera’s field of view. As such, hand detection amounts to skin

segmentation and connected component labeling. The skin segmentation technique

employed is the same of [38], where color histograms in the YUV space (without

the Y component) are used to classify pixels with color c = [u, v]ᵀ as belonging to

16

2 2 2
2

2

1
1

1
1

1

1
1

1

1

1

6

Figure 2.4: Our right hand shape model On the left, we show a top view of our
shape model, inspired by [1]. On the right, we show the same picture, overlaid with
the same hand skeleton of Figure 2.2 and with the matching DOF numbers. This
shape mode is composed of mesh triangulations of 15 cylinders and 22 ellipsoids.

either the skin or non-skin classes, denoted by s and s̄, respectively, according to

Bayes rule:

P (s|c) =
P (c|s)P (s)

P (c)
(2.1)

where P (s|c) is the posterior probability of c belonging to s, P (c|s) is the likelihood

of c among skin colors, P (s) is the prior probability of finding skin pixels (the

expected ratio of s in the observations) and P (c) is the evidence probability, that is,

the probability of observing color c among all others.

The posterior probability in the previous equation is calculated for each pixel

and compared against two hysteresis thresholds τs and τs̄, with τs > τs̄. A pixel c

is considered to belong to s if P (s|c) > τs or if P (s|c) > τs̄ and it is neighbor to

some skin pixel, where the definition applies recursively. The resulting skin pixels

are grouped in connected components and the components with less than a certain

number τB of pixels are filtered out. Figure 2.5 illustrates this process.

Given the simplifying assumptions in [1], all blobs but the largest are discarded.

But when dealing with more complicated scenarios where multiple hands [13], hands

interacting with objects [14] or hands subject to partial occlusion are tracked, the

full technique of [38] is more suitable, as it manages object hypotheses (creates,

updates, evaluates against connected components and removes when needed) to

track observed blobs while dealing with occlusion.

17

(a) Source RGB frame. (b) Resulting skin blobs.

Figure 2.5: Skin blobs produced during hand detection.
Only the two larger blobs remain, the largest of which corresponds to the hand.
This example is repeated in Section 3.2.3.

Two final steps are required to obtain the binary mask of observed skin pixels

SO and isolate the relevant observed pixel depths DO, in [1]: (a) the selected blob

is dilated with a circular mask of radius 5 and (b) given the estimated 3D position

of the hand in the previous frame, all depth information further than 25 cm of

the hand model’s center is discarded. The authors are not precise as to how pixel

depths are discarded during initialization phase (the first frame) or what model point

is considered to be the hand’s center. Together, the pair of images O = (SO, DO)

constitutes the output of this phase and is fed to the pose estimation phase in order

to calculate the objective function.

Calculation of skin histograms

One interesting contribution of [38] is the development of a semi-automatic skin

classifier training procedure. Since manual annotation of skin pixels in data sets is a

laborious task, color histograms are updated iteratively as follows: (a) an arbitrarily

small non-empty set of ground truth images is provided by a human operator; (b) the

system computes the histograms based on the input; (c) the system automatically

segments further images provided; (d) the operator may manually fix incorrectly

classified pixels; (e) color histograms are updated in order to segment the next

image (if any). This procedure may be carried on until the operator is satisfied with

the classifier results. The authors report an initial training set of 20 images and 80

additional images used in their experiments, with no quantitative results.

In order to make the system more robust against illumination changes, a com-

mon challenge for skin detectors, two classifiers are actually employed: the offline

classifier trained with the previously described procedure and an online classifier

that is updated assuming detected skin is correctly classified. When comparing the

18

posterior probability of a pixel color being a skin color with the hysteresis thresholds,

a linear combination of both classifiers is actually used:

P (s|c) = γP (s|c) + (1− γ)Pw(s|c) (2.2)

where Pw comes from the online classifier, considering only the w most recent frames

and the γ ∈ [0, 1] parameter controls the influence of the adaptive part. The reported

values for the authors’ experiments are w = 5 and γ = 0.8.

2.3.4 Pose estimation

Hypothesis evaluation

Assuming the Kinect’s depth camera calibration matrix is known, a depth map

DR(h) of the same size as the input frames is generated for each hand pose hypoth-

esis h by rendering the articulated hand model parameterized by h with a virtual

camera setup that mimics the known camera matrix. The rendered depth map is

then compared to the observed data O = (SO, DO) through the GPU-accelerated

calculation of the energy function below

F12 = λA

∑
min{|DO −DR|, τM2}∑

(SO ∨DM) + ε1
+

(
1− λB

2
∑

(SO ∧DM)∑
(SO ∧DM + SO ∨DM)

)
(2.3)

where ε is described as a small constant to avoid division by zero, λ is a scaling factor

and DM(h,C) is a binary map of matched depths between DR and DO, defined as

DM(O) =

{
1, if |DR −DO| < τM1 or DO = 0

0, otherwise
(2.4)

that is, each pair of pixels in the depth maps is considered to be a match (value 1) if

the depth difference between rendered (DR) and observed (DO) is smaller than the

threshold τM1 or if the observed data is reported as unknown by the depth camera

(DO = 0).

The complete evaluation of hypothesis h contains another term F2(h), which

is responsible for penalizing anatomically unfeasible poses and is defined as the

clamped sum of adduction-to-abduction angle differences between adjacent fingers,

that is

FK = −
∑
p∈Q

min{Θ(p,h), 0} (2.5)

where Q corresponds to the three pairs of adjacent fingers excluding the thumb and

Θ(p,h) is the signed angle difference between the angles of finger pair p in h. The

19

complete formulation of the objective function is then given by

F (h, O) = F12(h, O) + λKFK(h, O) (2.6)

where λ3 is yet another scaling factor.

Particle update

Each particle in the swarm corresponds to a point h in the pose space P . As several

iterations, or generations, are computed, they move across the pose space influenced

by: (a) inertia, (b) individual memory of best solution found so far, (c) their per-

ception of the fittest particle and (d) subtle random perturbations that occur at

regular intervals. Individual particle memory at k-th generation is represented as a

vector (k)bi that corresponds to the i-th particle’s best scoring position so far and the

fittest particle, indicated by (k)b, is shared across the whole swarm. At every gener-

ation, particle velocities are steered towards (k)bi and (k)b by random proportions,

contributing to exploratory behavior, as outlined in the following equations

(k+1)vi = w
[

(k)vi + c1r1

(
(k)bi − (k)hi

)
+ c2r2

(
(k)b− (k)hi

)]
(2.7)

(k+1)hi = (k)hi + (k+1)vi (2.8)

where r1, r2 are two independent uniformly distributed variables in the range [0, 1]

and c1, the cognitive component, and c2, the social component, control the maxi-

mum influence of the per-particle memory and the global best solution, respectively,

on each particle’s velocity. Because of these random components, the resulting op-

timization scheme may be characterized as a stochastic algorithm, since separate

executions may obtain different results. The adoption of the w constriction factor,

which assumes values in the (0, 1] interval (as can be deduced from its definition

in Equation 2.9) limits velocity magnitude, so that the chances of particles leaping

over good solutions are reduced. The authors of the reference work mention that

determining these parameters may be achieved experimentally, but do not give fur-

ther details. Consequently, we adopted the same values, described in Appendix B.

w =
2

|2− ψ −
√
ψ2 − 4ψ|

, with ψ = c1 + c2 (2.9)

In order to respect static joint constraints, updated particles must be corrected

if they violate the permitted ranges after applying Equation 2.8. The adopted

correction method was projecting to the nearest pose-space surface point.

An additional measure applied to prevent bad finger estimation as a result of

local minima is to perturb a randomly chosen finger joint parameter for half of the

20

particles at every ir iterations. The chosen joint parameters are replaced by samples

of a uniform distribution in the corresponding permitted value ranges.

Temporal coherence and initialization

Temporal coherence is achieved by initializing the swarm members for frame k + 1

with randomly disturbed copies of the k-th frame’s solution. The authors are not

precise as to how the variance of these disturbances is determined, although they

mention it should be inferred from the jerkiness of observed motion through time.

Initialization on the first frame is also not explained in great detail. The au-

thors report choosing [x, y, z]ᵀ palm coordinates in the camera space that match the

estimated position of the hand blob, so that, when rendered, the model and the

blob appear as close as possible to each other. Calculation of the the hand model

orientation that collaborates for this approximate placing is also not described.

21

Chapter 3

Method description

The hand pose tracking method we developed is divided in a number of steps, imple-

mented by dedicated modules. It stems from the main reference work [1, 13, 14] in

a number ways, including algorithmic details that were not thoroughly documented

by them, parts where an initial simplified solution proved to be a working replace-

ment, or when environmental conditions, such as lighting and background, where

very particular to the performed tests. An overview of its structure is presented in

Figure 3.1. In terms of structure, by comparing Figure 2.1 with this one, three facts

become apparent: (a) we perform no depth filtering based on the last estimated

pose; (b) our skin detector is composed only by a static part and is not subject to

feedback training; (c) we perform skin detection and blob isolation on the GPU. In

the next sections, we describe each of the system’s major aspects, in order: prepro-

cessing of input data, hand detection and isolation, modeling of hand kinematics

and shape, hypothesis rendering and, finally, pose estimation.

3.1 Acquisition and preprocessing

The Kinect camera is briefly describe in Appendix A. The RGB frames produced

by it may present some common image artifacts in low cost CCD cameras, such

as chromatic aberration and purple fringing [39]. Such phenomena are not fully

understood and constitute a challenge for digital camera manufacturers, but they

are known to appear in some conditions, such as when a dark object is in front of

a strong natural or halogen lamp light source. To reduce the negative influence of

these artifacts during our color-based skin detection, we applied a median filter of

diameter 5 to all video frames. As Figure 3.2 exemplifies, these phenomena usually

manifest as an aura of sparse oddly colored pixels in skin borders. Since they have

unlikely colors, replacement by the median value in each 5 × 5 window removes a

considerable part of them.

The Kinect cameras are calibrated during manufacturing and the corresponding

22

Kinect
camera

Preprocessing and
hand detection

PSO

Skin
detector

RGB

Depth

Particle
swarm

Observed
skin (SO)

Final
pose

Observed
depth (DO)

Rendered
depth (DR)

Objective
function

Depth
thresholding

n < 16

Particle ranking
and update

Pose
rendering

Swarm
initialization

Pose
hypothesis p

Figure 3.1: Overview of our system modules
Parallelograms indicate input, output and intermediate data, rectangles indicate
modules/steps performed by the algorithm and the diamond indicates iteration con-
trol. Light blue boxes indicate data or steps that occur only once per frame. Dashed
arrows indicate information that is used as feedback in the next frame. Rectangles
with a blue outline indicate steps that are computed on the GPU.

Figure 3.2: Kinect video frame before and after median filtering The frame on the
left shows a RGB image just as it was captured from the camera. Two enlarged
versions of the rectangular area surrounded by a red frame are shown on the right,
both scaled up using nearest neighbor interpolation to improve clarity: the top one
contains the same pixels as the left frame and the bottom one comes from the image
transformed by a median filter.

23

Figure 3.3: Improved view of a Kinect depth frame

On the left, a depth frame captured in one of our experiments using the own camera’s
registering and millimeter conversion facility. The farthest pixel is about 6 meters from the
camera plane, so the 16-bit pixel range [0, 6000] mm was linearly scaled down into an 8-bit
grayscale. The image on the right represents the same frame, but depth values greater
than 0.8 meters were discarded and the depth range of [0, 800] mm was exponentially
scaled into [0, 255] to increase contrast and give an idea of the Kinect’s precision at close
range.

parameters are stored in the device’s memory [10], so Kinect device drivers usually

provide a depth camera mode in which the image is automatically re-projected in

alignment with the RGB camera. The re-projected depth frame covers a smaller

area than the video frame, as can be noted from the frame of missing depth values

around the left image in Figure 3.3, which is the corresponding depth frame to the

RGB frame in the left of Figure 3.2. Thus, all experiments were performed near

the center of the depth camera’s field of view. The registered image depth camera

mode also provides automatic depth to real distance conversion, so that the values

obtained represent the distance, in millimeters, from the camera plane.

All of the previously described steps are performed in CPU. The resulting video

and depth images are transferred to GPU memory and then passed to the next

module in the system.

3.2 Hand detection

The approach we adopted to detect and isolate the performing hand was color-

based skin classification, followed by connected component labeling and a simple

component filtering strategy. In the following subsections, we provide more details

on the implementation of our detector, on its training phase, including used datasets,

and on the final isolation of the hand.

24

3.2.1 Skin detector

As explained in Chapter 2, it is possible to build robust skin detectors based only on

per-pixel color information. The reference hand pose estimation methods implement

the skin detection algorithm of [38], which classifies pixels as either skin or non-skin

based on a combination of two chrominance histogram models, one trained offline

using a semi-automatic training phase and an online model that adapts to the most

recent frames. Gaussian-based classifiers, although usually recognized as less robust

than histogram models, are also reported in the literature as having satisfactory

results [31], which was confirmed by our experiments.

Just as the other method we described, our single 2D Gaussian model of skin

color, based on the description provided in [31] distinguishes between skin and non-

skin pixels by operating on the chrominance subset of the YUV color space, that

is, we strip the Y channel and use only the UV components, which gives us the

color space CUV = {[u, v]ᵀ : 0 ≤ u, v ≤ 255}. Instead of an assisted training phase,

Gaussian classifiers are usually trained using a maximum likelihood estimation strat-

egy over the available datasets. In our case, we applied two skin detection datasets

consisting of pictures containing people and manually segmented binary skin masks.

The computation of model parameters is described in the next paragraphs.

nD Gaussian model

In this section, we review some important models and results of probability and

statistical theory on normally distributed variables. The reader unfamiliar with the

basics of probability and statistics, or seeking an in-depth discussion of the subject,

is referred to [40]. We start by recalling that a random variable X following a normal,

or Gaussian, distribution has the following probability density function (pdf)

φµ,σ(x) =
1√
2πσ

exp

(
−1

2

(
x− µ
σ

)2
)

(3.1)

where µ is the distribution’s mean and σ is the standard deviation. A common way

of describing the normally distributed variable X in terms of these parameters is

writing, simply, X ∼ N(µ;σ).

The standard normal distribution N(0; 1) has null mean and unit standard de-

viation and any variable X ∼ N(µ;σ) may be transformed into a variable Z that

follows a standard normal distribution by carrying out the transformation

Z =
X − µ
σ

(3.2)

25

It may be verified, as shown in [41], that Z’s pdf is, indeed,

φ0,1(z) =
1√
2π

exp

(
−1

2
z2

)
(3.3)

In the most general case of a normally-distributed, n-dimensional random vari-

able X = [X1, . . . , Xn]ᵀ assuming values in Rn, the distribution X ∼ N(µ; Σ) is

characterized by its mean point µ = [µ1, . . . , µn]ᵀ and its covariance matrix Σ,

which has the form

Σ =


σ2

1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

. . .
...

σn2 σ12 . . . σ2
n

 (3.4)

where σij indicates the covariance of the Xi and Xj components. The joint probabil-

ity density function for X is described in terms of points x ∈ Rn and the distribution

parameters as

φµ,Σ(x) =
1√

2π
n|Σ|

exp

(
−1

2
(x− µ)ᵀΣ−1(x− µ)

)
(3.5)

Just as with the one-dimensional case, it is possible to map X ∼ N(µ; Σ) into

a vector variable Z that follows a standard n-dimensional normal distribution Z ∼
N(0; I). That is accomplished by the transformation

Z =
(

Λ−
1
2V ᵀ

)
(X− µ) (3.6)

where V is an orthonormal matrix (since Σ is symmetric) containing the eigenvectors

of Σ and Λ is a diagonal matrix containing its eigenvectors. Furthermore, as Σ is

symmetric and positive definite, Λ has only positive entries, so Λ
1
2 indicates the

matrix where the entries are the square roots of the corresponding entries in Λ.

This full eigen-decomposition Σ may be expressed by the equation

Σ = V (Λ
1
2 Λ

1
2)V ᵀ (3.7)

It then becomes apparent that, by employing the variable substitution of Equa-

tion 3.6, the argument to the exponential function in Equation 3.5 becomes simply

−1
2
zᵀz. The complete demonstration that this transformation implies Z ∼ N(0; I),

with pdf

φ0,I(z) = (2π)−
n
2 exp

(
−1

2
zᵀz

)
(3.8)

comes from the definition of a pdf and from the theorem of change of variable in

integrals [42], but we do not reproduce the proof here. Rather, we limit ourselves

26

to arguing intuitively that: (a) subtracting µ from the points x translates them

to the origin of the coordinate system; (b) then, multiplying by V ᵀ rotates those

points into a basis where all components are independently distributed; (c) which

means the only non-null entries in the diagonal matrix Λ should be the variance

entries and (d) multiplying V ᵀ(x − µ) by the inverse of Λ
1
2 on the right should do

the equivalent of Equation 3.2, that is, dividing every component by its standard

deviation and obtaining independent standard normally distributed components.

The eigen-decomposition of Σ and the discussion on the nD Gaussian distribution,

shown above, were presented in [41].

Classification

The histogram-based double threshold approach adopted by [38] considers pixels

with prior skin probability greater than some level τs to be skin and saves pixels

with skin probability between τs̄ and τs for later consideration by hysteresis. In the

case of a Gaussian model, the description in terms of a probability density function

is continuous, hence unsuitable for computing discrete probabilities at specific color

points. Instead, it is possible to compute the cumulative probability of finding skin

colors inside delimited regions of the color space and test pixels to see if they are

inside those regions. In the following paragraphs, we discuss how classification is

performed in a Gaussian framework and also propose: (a) a geometric interpretation

that is not commonly discussed in the literature and (b) a new way of choosing the

classification threshold.

As we can see from Equation 3.8, the n-dimensional Gaussian probability density

is a monotonic function of the point’s distance to the distribution mean and can be

expressed in a form very similar to the one-dimensional pdf of Equation 3.3, as

φ0,I(z) = φ(r) = (2π)−
n
2 exp

(
−1

2
r2

)
(3.9)

where r =
√

zᵀz. Since this function decreases as r increases, Gaussian detectors

are parameterized by a positive value a and consider a pixel to be a skin pixel if,

and only if, its color c satisfies

r ≤ a (3.10)

after normalization, since r ≤ a =⇒ φ(r) ≥ φ(a). The parameter a works as a

threshold for selecting pixels with a minimum probability density and is empirically

chosen by observing the trade off between true and false detection rates that it

controls. The geometric interpretation of Equation 3.10 is that color pixels are

selected if, and only if, after transformation by Equation 3.6, they belong to a

hypersphere of radius a. On the UV plane, instead of a circle (a 2-dimensional

27

Figure 3.4: The UV chromaticity plane and the skin class boundaries. The chro-
maticity plane corresponds to the Y = 255 plane in the YUV color space. The two
ellipses show the boundaries of the strong (blue, inner line) and weak (between blue
and red) skin classes.

hypersphere), we have an ellipse that is centered in the color distribution mean and

aligned with the the directions in which skin color concentration is higher, as show

in Figure 3.4. The effect of the transformation in Equation 3.2 is, precisely, mapping

that ellipse into a circle and turning the problem of determining if a c is a skin color

into simply testing if z is no greater, in magnitude, than a.

Gaussian classification is usually performed as was just explained. We however,

tested a mixed approach, inspired by the hysteresis thresholding of [38], with sat-

isfactory results. We choose two different radii rS and rW and classify each pixel

color c as:

• a strong skin pixel, if zᵀz ≤ r2
S

• a weak skin pixel, if r2
S < zᵀz ≤ r2

W

• a non-skin pixel, otherwise

Again, Figure 3.4 clarifies this description, by showing the UV plane with the cor-

responding strong and weak skin ellipses.

The actual implementation of the skin classifier corresponds to a single CUDA

kernel that receives an array of 24-bit RGB pixel values and outputs a segment mask

with 3 values that encode the possible skin classes.

Choosing the threshold radii

Choosing a threshold radius for a Gaussian classifier is usually described as an

experimental process to balance between correct and incorrect detection rates. We

28

Images Total pixels % of skin pixels
FSD 4000 1.1 billion 23%
IBTD 555 100 million 25%

Table 3.1: Summary of FSD and IBTD datasets.

make succinct contribution here, by choosing the values of the rW and rS radii

with the aid of the cumulative distribution function. Computing the cumulative

distribution function (cdf) of a standard 2D Gaussian distribution over an arbitrary

region may be a complex task, but when this region is a circle of radius a centered

on the origin, the cdf is, simply,

pa = P (ZᵀZ < a) = 1− e−
a2

2 (3.11)

This of the probability pa in terms of the radius a is easily invertible, giving

a =
√
−2 ln (1− pa) (3.12)

Considering the probabilities of 40% for rS and 65% for rW , as used in our classifier,

we obtain radii 1.18 and 1.45, respectively. Although choosing the percentages

is still an empirical process, we believe this procedure to be much clearer, since

percentages relate to the population of skin colors, contrary to radii, and have a non

linear mapping to the latter. Equation 3.11 is demonstrated in Appendix C.

3.2.2 Skin classifier training

Our Gaussian model parameters were estimated from two skin detection datasets

containing pictures of people and corresponding binary skin masks created by hand,

namely the FSD [34] and IBTD [43] datasets, summarized in Table 3.1.

In order to learn the Gaussian model parameters from the datasets we calcu-

lated the maximum likelihood estimators for the mean and the covariance, which

correspond to the sample mean and sample covariance

µ̂ =
1

|D|
∑
x∈D

x (3.13)

Σ̂ =
1

|D| − 1

∑
x∈D

(x− µ̂)(x− µ̂)ᵀ (3.14)

where D represents the set of skin color samples from all datasets. The estimators

obtained for these datasets are given in Table B.1.

In previous experiments with a histogram-based classifier, we noticed that the

JPG compression applied to the images in these datasets produced regularly spaced

29

(a) Skin colors in FSD (b) Skin colors in IBTD

Figure 3.5: Skin colors histograms in the FSD and IBTD datasets. Color bars
indicate incidence of UV colors, spread accross the UV plane. The images in the
datasets are stored with considerable JPEG compression, causing pixel values to
concentrate around sparse peaks in the histogram, with a lot of leaps caused by
colors that do not occur in the images. Gaussian filtering (with a Gaussian kernel of
radius 5) was applied on the color incidence matrices prior to plotting the histogram,
in order to spread the pixel concentrations and give a better visual notion of skin
color concentration.

holes in the gamut of the images. To counter this fact, we applied Gaussian filtering

to the images before computing the histograms. However, when latter adopting

a Gaussian approach, the distribution mean and covariance was not significantly

affected by the missing colors. Figure 3.5 shows the color histograms of the referred

datasets.

3.2.3 Hand isolation

Tracking a single posing hand in a controlled scenario where no interaction with

other hands or objects takes place may be achieved with a simple tracking approach.

Assuming that the performing hand is the only part of the tracked person or rather,

the biggest visible part in front of the camera, we may rank the blobs by size and

filter out the small ones. This requires calculation of connected components and

theirs sizes, which we describe next.

Blob generation

Just as previously described, the classification step produces an output table were

each pixel is assigned one of the non-skin, strong skin or weak skin classes. In

order to obtain the skin-colored blobs, we first dilate the strong skin pixels with a

30

(a) (b) (c)

(d)

Figure 3.6: Connected component labeling on the GPU.
Snapshots of Kalentev’s CCL algorithm on an example 8× 8 binary image – white

is foreground – at the end of each phase. The binary input (a) is first assigned
provisional labels (b); then, each iteration performs a scan (c) and an analysis (d)
steps to propagate minimal labels among neighboring pixels and solve equivalence

chains.

circular mask of radius 5, then apply a variation of the GPU connected component

labeling (CCL) method of [44]. This method is composed of one initialization step,

in which each pixel is assigned a unique label corresponding to its offset in the image

array, and two iterative steps that are executed until the label array converges: (a)

a scan step, during which each pixel is checked for higher precedence neighboring

labels and (b) an analysis step, that applies a parallel version of the union-find

algorithm to solve label equivalence chains and ensure that all connected pixels will

ultimately share a single label, called representative label. This process is illustrated

by Figure 3.6.

In order to reproduce the hysteresis behavior of [38] we modify pixel labels by

storing a segment part and an address part in each label. The segment part iden-

tifies which skin class the pixel belongs to and the address part corresponds to the

pixel offset. During the scan phase, each foreground pixel p has its 8-connected

neighborhood N8(p) checked for a label l′ with higher precedence than the pixel’s

own label l, and if such exists, it is assigned to p. Non skin labels are considered

background and are ignored by the process. Otherwise, given foreground labels l

and l′, l′ has higher precedence if: (a) l is a weak skin label and l′ is a strong

skin label or (b) they are of the same skin type and l′ has smaller address. After

the algorithm converges, an extra pass erases all pixels with weak skin labels, since

31

(a) Source RGB frame. (b) Resulting skin blobs.

Figure 3.7: Skin blobs produced during hand detection.
Skin classification in this case was applied with very tight model parameters,

resulting in a strong skin region that contains the whole hand, but only scarcely
detecting portions of the face.

they are certainly not adjacent to any strong skin region. Figure 3.7 displays some

skin-colored blobs produced during the process.

Blob selection

In order to rank the blobs by size and choose the biggest one more efficiently, they

need to be filtered by size, as a considerable number of small spurious blobs are pro-

duced, and relabeled sequentially. The latter may be accomplished, as noted by [45]

by filling an array of the same size as the input image with a 1 for every representa-

tive pixel and a 0 for all others, then applying an exclusive prefix sum operation. The

exclusive prefix sum of an array A = {a1, a2, . . . , an} is the array where each element

is replaced by the sum of its predecessors, that is, A′ =
{

0, a1, . . . ,
∑n−1

i=1 ai
}

. The

final numbers in A′ constitute a sequential relabeling to the representative pixels in

the label array.

In order to calculate blob size or any other integral property of blobs, a properties

array may be used in addition to the label array [44]. This array is initialized with

per-pixel properties (such as unit area, for instance) during the initialization step

and, during the analysis step, the partial properties are accumulated in the position

of the representative pixel (the one corresponding to the highest precedence label).

Finally, at the end of the process, the representative pixel of every region will contain

the sum of the region’s properties.

We finish the selection step by copying label properties and their original labels

to CPU memory and selecting the blob with greatest area. Finally, a last GPU pass

over the label array is performed to eliminate all pixels but the ones corresponding

to the selected blob, so that we are left with a binary mask of skin pixels.

32

3.3 Hand modeling

We adopted the same hand kinematic and shape models as the ones presented in

Section 2.3. Here, we detail our implementation of both models according to our

interpretation of the reference works and related literature in the areas of hand

kinematics modeling [11, 17, 19] and forward kinematics. For the latter, we do not

provide an specific source, but rather describe our approach in detail.

3.3.1 Kinematics modeling

Pose space

In addition to the static joint constraints described in Section 2.3, we employ an

intrafinger dynamic constraint that is modeled after the observation that few people

can actively bend one finger’s distal phalanx without bending the corresponding

medial phalanx and vice versa, at least without forceful motion [17]. This restriction

ties the values of each PIP-DIP pair, except for the thumb (since it has a single IP

joint that moves independently from the MCP joint), as follows

θDIP,F ≤
2

3
θPIP,F (3.15)

With that restriction, 4 degrees of freedom are spared and hand poses need only

23 numbers to be fully represented, which encode 22 actual DOFs because of the

quaternion used for wrist orientation. Of those 23 components, 7 specify hand

position and orientation, and 16 are Euler joint angles, 10 being adduction-abduction

(AA) movement angles and 6 being flexion-extension movement (FE) angles. The

complete description of this vector is given in Table 3.2 and we therefore indicate

the set of all possible vectors, given the described static joint constraints, by P and

name it the pose space. The elements p ∈ P will be referred to as pose vectors or

simply poses.

Forward kinematics

We treat hand posing as a forward kinematics (FK) problem, that is, hand parts are

arranged in a tree-like hierarchy in which one moving part causes all its descendant

parts to move by the same amount. The complete FK chain has 16 nodes, one for

each articulated joint and it spans from the wrist, the root node, towards the fin-

gertips. Each node has a corresponding transformation matrix that is derived from

the product of local transformations with the accumulated product of its ancestor

nodes’ transformations.

The local coordinate frame Li of an arbitrary joint ji may contain a combina-

33

Palm
Fingers

T I/M/R/L
Orientation Location CMC MCP IP MCP PIP
[x, y, z, w] [x, y, z] θAA θFE θAA θFE θAA θFE θFE

(quaternion) (meters) (Euler angles in radians)

Table 3.2: Components of the pose vector. For the palm, global orientation and
positioning are described by a 4-component quaternion and a 3-dimensional vector.
Most fingers have proximal and distal interphalangeal (PIP and DIP) joints with
a single flexion/extension angle θFE, although only the former is a free parameter,
and a metacarpophalangeal (MCP) joint with both flexion/extension and adduc-
tion/abduction (θAA) angles. The only exception is the thumb (T) , which has a
carpometacarpal (CMC) joint with two degrees of freedom, in addition to a MCP
and a single interphalangeal (IP) joint, each with a single θFE DOF. The index (I),
middle (M), ring (R) and little (L) have identical parameters.

tion of axis rotations, scaling and translation relative to its parent’s transformed

coordinate system, all of which may be compactly represented as a 4× 4 matrix in

homogeneous coordinates. In a simplified linear exposition of FK chains where node

ji is the only child of node ji−1 and j0 is the wrist joint, the transformation matrix

of ji in world coordinates, is given by the recursive equation

Gi = Gi−1(LiPi), ∀i ≥ 1 (3.16)

where Gi is ji’s transformation matrix in world coordinates, Li is called resting pose

matrix or local matrix and Pi is the pose matrix. The pose matrix is a rotation-

only matrix parameterized by joint rotation angles and when it equals the identity,

Equation 3.16 resorts to

Gi = Gi−1Li,∀i ≥ 1 (3.17)

which is why we name Li as resting pose matrix. In all cases, we assume that

G0 = P0L0 and that L0 and P0 satisfy two additional properties: (a) since j0 has

no parent node, L0 contains no translation and (b) for the same reason, P0 is the

only pose matrix that may contain a translation, which corresponds to the wrist

translation in global coordinates.

The pose matrices are calculated by the product of relevant joint Euler rotations

angles

Pi = RZ(θAAi)R(θFEi) (3.18)

where θAAi and θFEi are the ji’s AA and FE movement angles, respectively. If ji

does not present AA movement, the last equation amounts to an X-axis rotation.

34

Figure 3.8: 3D primitives employed in the assembly the hand model. The shape
primitives correspond to triangulations of a delimited cylinder with radius 1 and
height 1, centered on the base disc and a unit sphere. The cylinder is triangulated
with 32 longitudinal sections and the sphere with 32 longitudinal and 16 latitudinal
sections. The hand model was created with the help of the Blender 3D model-
ing software and the correspondence we adopted between its metric unit and the
International System was 1 bu. (blender unit) to 1 m.

Euler rotation matrices for the X, Y, Z axes are shown in Equation 3.19

RX(θ) RY (θ) RZ(θ)

= = =
1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1



− sin θ 0 cos θ 0

0 1 0 0

cos θ 0 sin θ 0

0 0 0 1




cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1


(3.19)

3.3.2 Shape modeling

The adopted hand shape model is analogous to the mesh model used in the reference

works and previously shown in Figure 2.4. It was assembled from 37 instances of

the two basic primitives shown in Figure 3.8, by copying, scaling, rotating and

translating the shapes based on a photograph of the author’s right hand. Once

the model was completed, the transformation matrices for each instance of the 37

primitives were imported into our system.

The FK chain modeling joint positions and orientations that was described in

the previous subsection contains only 16 nodes. However, to apply a pose vector to

the shape model, every primitive instance needs to be transformed and hence, needs

a node of its own. The actual FK tree we employed contained 38 nodes, nearly one

for every primitive, since the ellipsoids centered around joint positions were used to

implicitly represent the joint nodes themselves. The only notable exception occurs

with the thumb CMC joint and the ellipsoid that forms the thumb base, because

this joint is located inside the palm whereas the rounded shape of the thumb base

35

Wrist

MCP

PIP

DIP

Fingertip

PalmCMCThumb
base

MCP

Distal
phalanx

Medial
phalanx

Proximal
phalanx

Figure 3.9: Full forward kinematics tree, with joints and shapes.

is prominent in relation to the palm surface, so they do not share a single node as

it might seem appropriate at a first glance. Figure 3.9 gives a good understanding

of the full tree-like structure of our model we just described.

3.4 Hand rendering

In order to compare each pose vector hypothesis p to the actual observations, p

is applied to the hand model, which is then rendered with OpenGL to obtain the

relevant depth map. Each depth map produced by OpenGL in this setting is a

640 × 480 image of 32-bit floating point depth values zD in the range [0, 1], which

are later mapped into distance values in millimeters.

OpenGL camera model

OpenGL usually assumes two matrices in order to render primitives: a modelview

matrix that scales, rotates and translates objects in space relative to the camera

and a projection matrix that dictates the form of the viewing frustum and the type

of projection (usually perspective or orthogonal) applied to the scene. The model

view matrix may be seen as the product of two other matrices: a model matrix W

that transforms the local vertex coordinates v into world coordinates vW and a view

matrix E that maps these into camera or eye-space coordinates vE. We simplify

the discussion by considering only their product G = EW , since G may be obtained

36

directly from the FK calculation step. The adopted projection matrix

P =


fx 0 0 0

0 fy 0 0

0 0 − zN+zF
zF−zN

−2 zNzF
zF−zN

0 0 −1 0

 (3.20)

aims to approximate the Kinect’s depth camera (radial distortion not included)

and it is constructed from the Kinect’s relevant depth camera parameters listed in

Table A.1. Other formats of projection matrix are possible, but are not relevant to

our discussion.

Through the course of the rendering pipeline, after eye-space coordinates vE are

transformed by the projection matrix P into projection coordinates vP , perspective

division is carried out as follows

vP = PvE = [xP , yP , zP , wP]ᵀ (3.21)

vC =
vP
wP

=

[
xP
wP

,
yP
wP

,
zP
wP

, 1

]ᵀ
(3.22)

In our case, the resulting point in clipping-space coordinates vC are

vC =

[
−fxx

z
,−fyy

z
,
zN + zF
zF − zN

+
2

z

(zNzF)

zF − zN
, 1

]ᵀ
(3.23)

Depth value correction

The raw depth values produced by the Kinect camera have a non-linear relation to

the actual distance from the camera center, so that closer objects are represented

with better precision. The usual projection matrix employed in OpenGL rendering,

shown in Equation 3.20, fulfills a similar purpose, since the calculated clipping depth

zD ∈ [0, 1] is inversely proportional to its eye-space distance zE ∈ [zN , zF] after

perspective division, as we can see from the clipping coordinates in Equation 3.23.

Since we are interested in the actual distance to the camera center, we use the

special Kinect camera mode in which the depth image is automatically registered

onto the RGB camera coordinate system and the raw depth values are converted

into actual distance values in millimeters. In order to also obtain a linear mapping

from eye coordinates to clipping coordinates during rendering, we modify the vertex

shader by altering the value of the projected zP coordinate

zP ← −zP
(

2
−zP − zN
zF − zN

− 1

)
(3.24)

so that, after perspective division, we end up with a clipping-space z coordinate that

37

linearly maps distances in the [zN , zF] range into [0, 1]

zC =

(
2
−z − zN
zF − zN

− 1

)
(3.25)

After the single pass of the vertex and fragment shaders, the rendered zD of

each fragment is returned in the range [0, 1], and we finally unproject it back to an

eye-space value in millimeters to obtain compatible depth pixels by calculating

zE = 1000

(
zF − zN

2
(zD + 1) + zn

)
(3.26)

3.5 Pose estimation

Our optimization phase employs a variant of Particle Swarm Optimization (PSO)

similar to that of the main reference works, that was previously explained in Sec-

tion 2.3. In this section we just highlight the differences in our approach and some

relevant implementation details.

3.5.1 Computation of generations

For a given frame in which the computed skin mask and observed depth map are

given by O = (SO, DO), the algorithm initializes the first swarm S0 and performs a

preliminary evaluation of its hypotheses 0hi, as follows:

1. The scores (0)ξi = F
(

(0)hi, O
)

are computed for every (0)hi by evaluating the

objective function F

2. All (0)hi are ranked according to their scores (0)ξi

3. Best local positions (0)bi are initialized and the global best (0)b is annotated

4. The local best scores (0)ξi and the global best score (0)ξ are stored

From this point, each k-th generation, in a total of g generations, performs these

steps

1. A new swarm Sk is generated from the previous by updating the particles in

Sk−1 according to Equation 2.8 (page 20)

2. The new particles are evaluated as in the preliminary step, but each (k)bi,
(k)b

and their respective scores are only kept if they represent an improvement of

the previously stored result

38

At the end of g generations, the best particle across all generations is output as the

estimated pose.

Modified function

We performed one modification in the objective function F (h, O), in the formulation

of DM(h, O), previously defined in Equation 2.4. We make further restrictions

on the logical condition for assigning a positive depth match, as follows: (a) a

depth match is confirmed if both the observed and rendered depth maps (DO and

DR, respectively) are inside a tracking depth range [zTmin
, zTmax] and |DR −DO| <

τM1 or (b) DR ∈ [zTmin
, zTmax] and DO = 0. The reason for this is that, instead

of filtering depth values further than a certain amount from the hand blob, as

in the reference method, we filter depth values outside of the fixed depth range

[zTmin
, zTmax]. Hence, if we did not modify the function, it could produce positive

matches in unclear situations, such as when both depth values are 0 or when there

is a whole in the observed depth (DO = 0) and the rendered depth is at infinity.

In order to rephrase the definition of the energy function, we also define the three

following energy accumulators

A∆ =
∑

min{|DO −DR|, τM2} (3.27)

A∨ =
∑

(SO ∨DM) (3.28)

A∧ =
∑

(SO ∧DM) (3.29)

considering the definition of DM we just presented. These functions are useful for

describing the energy function in a more compact way and they will be useful in

describing its implementation in the following paragraphs. We rephrase the energy

terms as

F1(h, O) =
A∆

A∨
(3.30)

F2(h, O) = 1− 2A∧
A∧ + A∨

(3.31)

F3(h) = −
∑
p∈Q

min{Θ(p,h), 0} (3.32)

The energy function is finally described as

F (h, O) = λ1F1(h, O) + λ2F2(h, O) + λ3F3(h) (3.33)

Except for the modified DM function, the energy function is equivalent to the one

defined in the previous work. We just separate the energy terms further and rear-

39

range the weight coefficients for each term. For instance, the original energy function

could be described in terms of our energy terms as

F (h, O) = λAF1 + 1− λB(1 + F2) + λKFK (3.34)

One other relevant deviation is the adoption of weight parameters of the objec-

tive function with significantly different magnitudes. Because the energy term F12

defined in Equation 2.3 is significantly affected by its first sub-term, that corresponds

to a sum of depth differences, the second sub-term may be severely diminished and

contribute little to the overall energy even if a substantial number of depth pixels

do not match.

Objective function implementation

In order to implement the objective function calculation efficiently, we adopt three

strategies: (a) perform as few rendering passes as possible; (b) calculate the energy

accumulators for all particles at once; (c) sum the accumulators for each hypothesis

in a single operation. The first is accomplished by vertically stacking as many

640×480 framebuffers as possible. Since the current limits on OpenGL framebuffers

is 16 K by 16 K pixels, we may render up to 34 particles in a single render pass.

The second is done after all rendering passes are completed with a single CUDA

kernel launch, since the current CUDA architecture supports computation on a large

number of elements in a single call, making better usage of memory bandwidth. The

third is carried out by computing a prefix sum over each array of energy accumulators

with a custom associative operation. We mark the last pixel in each accumulators

array (that is, every (640·480)-th pixel) with a special value α and use, as associative

operation

f(a, b) =

a+ b, if a,b 6= α

0, otherwise
(3.35)

That way, energy accumulators are not summed beyond each rendered image’s limit.

Finally, in order to obtain the accumulated energy components, we just download

every (640 · 480)-th value in those arrays and multiply them on the CPU side to

compute the energy values for all hypotheses.

3.5.2 Tracking initialization

The first swarm member of the first generation of the first frame is initialized from a

predefined pose, where the hand fingers are spread open and the palm is facing the

camera plane, as shown in Figure 3.10. Random variations of these pose provide the

remaining p− 1 members of S0. When tracking over frames, the estimated solution

40

Figure 3.10: Initial hand pose overlays the image that was used for configuring it.

for the previous frame is, as in the reference method, picked as the first swarm

member in S0 for the newest frame and the remaining members are generated as

in initialization. Recovering from aborted tracking works similarly, by choosing the

best evaluated frozen swarm member for the current frame to be the first member

in the reinitialized swarm.

Another modification we propose is defining a maximum disturbance amplitude

for each type of DOF. Because the many different DOFs such as FE angles, AA

angles, quaternion components and hand coordinates influence hand appearance in

drastically different ways, we argue that the p− 1 members generated from the first

swarm member should not be subject to the same ratio of disturbance. For instance,

a 25% variation in the angle of the thumb IP joint produces a subtle pose variation,

whereas a 25% change in the hand x coordinate may drive the model away from the

approximate hand location.Therefore, we introduce 5 parameters: 3 for maximum

relative variation of FE angles, AA angles and quaternions components; and 2 pa-

rameters for maximum offset of xy-direction movement and z-direction movement

during pose variant generation. The default values are described in Appendix B.

41

Chapter 4

Discussion

This chapter presents an analysis of our method’s results. The first section describes

our testing environment in terms of ambiance, hardware and software and the video

sequences we recorded in order to evaluate our work. The second one discusses

the effectiveness (that is, accuracy, flexibility and resilience) and performance of our

method. Since an open dataset for assessment of RGBD-based articulated hand pose

estimation with ground truth is not available and the preparation of such is a time-

consuming task, we resorted to a qualitative assessment of effectiveness, considering

our time constraints. We, however, present the average time per frame for various

operations and modules, in order to quantify performance and make the bottlenecks

evident.

4.1 Experiments

In order to make a qualitative analysis of our method and aid in the development

process, we created a visualization module for our system and modified the acquisi-

tion module to allow both processing of live video streams and of pre-recorded video

sequences. For each displayed pair of video and depth frames, we paint the skin

mask over the depth frame and overlay the video with a transparent colored ren-

dering of the shape model in the estimated pose for that frame. The corresponding

objective function score is also displayed in the bottom left corner of the screen. Two

optional windows may also display, as depicted in Figure 4.1: (a) miniatures of the

last generation swarm members and (b) energy accumulators for every hypothesis.

Test videos

We recorded two input video sequences with our Kinect device in order to evaluate

our system at multiple development stages and test it with different parameters. In

all sequences, the author sat in front of the Kinect camera less than one meter away,

42

(a
)

D
eb

u
g

w
in

d
ow

fo
r

v
is

u
al

iz
in

g
re

n
d

er
ed

h
y
p

ot
h

es
es

.
(b

)
D

eb
u

g
w

in
d

ow
fo

r
v
is

u
al

iz
in

g
ac

cu
m

u
la

ti
on

of
d

ep
th

d
iff

er
en

ce
s

F
ig

u
re

4.
1:

S
om

e
au

x
il
ia

ry
d
eb

u
g

w
in

d
ow

s

43

Figure 4.2: Example frames from our test video sequences. The first sequence (rep-
resented by the left frame) contains 1038 RGBD frames and the second (represented
by the right frame) contains 841 RGBD frames.

so when his right hand was raised ahead of the body it stayed about half a meter

from the device. Then, the author performed a sequence of hand movements, such as

waving, moving one and multiple fingers at a time, rotating the hand and clenching

the fist, for instance. Figure 4.2 shows example frames from the two sequences.

Recording of the frames was performed in PNG format just as they were obtained

from the camera, without performing any compression or image processing.

Environment and equipment

Our experiments were performed on a desktop computer with an 8-core i7 Intel

processor, 16 GB of memory and a NVIDIA GTX 770 video card, featuring 1536

CUDA cores, 2 GB of dedicated memory and OpenGL 4.3 support. We developed,

compiled and tested all our software with the NVIDIA CUDA Toolkit version 7.5 [6]

(the latest version to date), in a 64-bit Ubuntu 15.04 operating system environment.

The toolkit includes a CUDA/C++ compiler with support for the version 11 of the

C++ language [4], which we used to compile and link code. The Kinect device

used was a Kinect for Xbox 360, model 1473. Fragment and vertex shaders used

for rendering of hand pose hypotheses were implemented in version 4 of OpenGL

shading language [5]. The references presented in this paragraph are for extensive

reference manuals of these languages, which we used frequently.

We believe that a description of the environment and light conditions of the room

where the videos were recorded is very important for anyone trying to produce a

similar scenario for experimentation. Since a very precise description would require

advanced lighting measurements that are out of scope, we give an overview on those

conditions, as follows: the room where the videos were recorded is approximately

65m2 in size, with light beige plates on the floor, walls and a white ceiling; it is

illuminated by 20 32W Philips fluorescent lamps with color temperature of 4100K

44

(a) 1st frame (b) 2nd frame

(c) 3rd frame (d) 4th frame

Figure 4.3: Rapid convergence at initialization The first four frames of the sequence
show the favorability of the position in which the palm is facing the camera: al-
though the first prediction is considerably misaligned with the performing hand, it
is corrected in just 3 frames (a tenth of a second).

that are laid out as almost uniformly spaced pairs.

4.2 Analysis

4.2.1 On the effectiveness

During the longer video, it was observed that the algorithm was able to correctly

predict the performed pose most of the time. It gave better results when the palm

plane was nearly parallel to the image plane, which may be explained by the larger

observable hand surface. In such occasions, it was able to quickly (in less than 20

frames) improve bad predictions and converge to a good estimation. Figure 4.3

shows the first four frames of this video.

Palm alignment was lost three times throughout the first sequence. In all times,

the hand was rotating in such a way that the palm plane became perpendicular

45

to the camera plane, reducing the total area of the hand observation. Between

the first occurrence and the recovery of the second one, illustrated in Figure 4.4,

85 frames elapsed. In the third occurrence, the apparent recovery leads to a hand

rotated around the arm longitudinal axis by 180 degrees, inverting the positions of

the thumb and little finger. This inverted position persisted until the end of the

sequence, as shown in Figure 4.5d.

In all described experiments, we used a relatively low number of particles (only

16) compared to the reference works (that employed 64), and also a smaller number

of generations (16 against 25) while still attaining average-quality results. We ex-

perimented with these resulted numbers because our code was only recently finished

and since there was no time to optimize it, using the same parameters caused an even

slower processing rate. The experimental evidence suggests that with this reduced

number of particles and iterations our method is better suited for straight-up hand

poses with a low degree of self-occlusion, although finger bending is still correctly

detected in many situations. Testing the same video 3 times gave similar results

for the presented frames. Figure 4.5 finally shows some varied poses tracked by

our method with varied degrees of quality, including rotated hands and a clenched

fist. It is possible to see, from those videos, that the tracking algorithm mostly

favors overlaying fingers over letting them occupy empty positions in space, that is,

positions that do not contain depth or skin information. So, when a wrong pose

is estimated, it usually involves a mistaken association of fingers, and not finger

floating loose in space.

4.2.2 On the efficiency

The average framerate is 0.34 Hz, as the system takes 2.94s to process a single

RGBD frame, in average. Most of this time is spent in the rendering process, which

includes FK calculation, data uploading to GPU and actual rendering. The graph of

Figure 4.7 shows the time spent by our method on each phase of the PSO module.

Figure 4.6 also shows the time spent on other modules of our system. Although

PSO time dominates most of the processing, it would still be relevant to reduce the

processing times for these modules if one were to optimize the system for realtime

operation.

We verified, on a late analysis, that most time spent on particle rendering was

due to an inefficient conversion of depth values. In order to compute the energy

accumulators using a CUDA kernel, the rendered depth values for each particle

must be readable by the kernel. Although mapping of OpenGL framebuffers to

the CUDA global memory address space is possible, this topic poorly documented

in the CUDA API, so there was no time to implement this mapping. Instead, we

46

(a) 765th frame (b) 766th frame

(c) 773th frame (d) 774th frame

(e) 829th frame (f) 850th frame

Figure 4.4: Tracking fail and recovery It is possible to observe how tracking accuracy
is degraded by the unfavorable perspective that takes place when the palm plane
is almost perpendicular to the image plane, a process that becomes more critical
from (a) to (b), as confirmed by the increasing value of the objective function.
Palm alignment starts to recover between (c) and (d), where there is a sudden drop
of the objective function, although the index finger assumes the position of the
middle, which assumes the position of the little, which is hanging. In frame (e),
as the palm plane becomes parallel to the image plane again, palm alignment is
considerably restored and in (f), all observed fingers are finally matched by their
model counterparts.

47

(a) 449th frame (b) 559th frame

(c) 670th frame (d) 919th frame

Figure 4.5: Various poses tracked by our method

Figure 4.6: Average time per frame spent on each module, except optimization

48

Figure 4.7: Average time per frame spent on each phase of optimization

sticked with the inefficient prototype implementation, which downloaded the depth

buffer from the GPU, converted those values from floating point into 16-bit integers

comparable to the Kinect’s depth format and uploaded them back to the GPU.

49

Chapter 5

Conclusion

All we have to decide is what to do

with the time that is given to us.

– Gandalf, The Lord of the Rings:

The Fellowship of the Ring

J.R.R. Tolkien

Although glove-based motion capture systems offer excellent precision for hu-

man hand tracking, their application in human-computer interaction is limited by

the cost and reduced naturalness of motion associated with these devices. On the

other hand, computer vision-based solutions are promising alternatives in terms of

cost and applicability, but must face many problems like noisy input, occlusion, vary-

ing illumination conditions and ambiguity, hence constitute and important research

direction.

In this text we described the implementation of a computer vision system that

uses RGBD data from the low-cost, end consumer Kinect sensor to track the artic-

ulated movement of a performing human hand. Our system, based on the work of

Oikonomidis et al. [1], was developed with the intent of reproducing that work and

identifying possible improvements. During development, we adopted a number of

different strategies and modified problem formulations based on related literature

and, as a result, we built a slightly different system that keeps the same overall

structure. Our experiments provide additional evidence that Particle Swarm Opti-

mization is, under certain conditions, a plausible technique for solving the problem of

fully articulated hand tracking. Although our system’s performance did not achieve

the expected marks, we identify most bottlenecks and some improvable features and

point at them in this text. Furthermore, we release our publish our system’s code

under open source terms 1, with the intent of helping future research in this area.

1Details on the source code repository are given in Section 1.3.1.

50

5.1 On the results

The image-based qualitative evaluation of our system provided in the last chapter

indicates that it is able to track hand poses with acceptable accuracy and has some

capacity to initialize tracking and recover from tracking errors. It deals most ef-

fectively with open hand poses where the palm is not perpendicular to the image

plane, although it can track finger bending if they are not very cluttered. Although

the experiments suggest that our accuracy was lower than the main reference’s, it

should be noted that we used a smaller swarm population (16 against 64) with less

generations (16 against 25), which were chosen as such in order to reduce processing

time.

The performance was highly affected by the conversion of rendered depth values

from a floating point representation into a 16-bit format compatible with the Kinect

depth frames, which took a considerable part of hypothesis rendering. The total

average time per frame for hypothesis rendering was approximately 2.4 s, which

corresponds to 9.7 milliseconds per particle per generation. Second to this, the most

critical phases are the objective function calculation, followed by particle ranking,

which take 243 ms and 152 ms on the average, respectively. If we were to improve

performance to reach processing times similar to [1, 13, 14], the total time of these

modules would need to be reduced by around 70%.

It is apparent, from the

5.1.1 Possible immediate improvements

The skin detection and energy accumulators calculation phases were implemented in

the GPU, but virtually all image processing and optimization steps of our algorithm

are parallelizable, including preprocessing and computation of swarm generations. If

PSO related phases were all computed on the GPU, expensive synchronization steps

and memory transfers would be saved. Computation of the FK chain on the GPU, in

particular, would allow to output modelview matrices directly to OpenGL uniform

buffers that are later used for rendering, and rendered images may be conversely

mapped into CUDA buffers in order to calculate the energy accumulators. Efficiency

of energy calculation could be further addressed by using a compact representation

for the two of the three energy accumulators used by the objective function, since

they are Boolean indicators with values of 0 or 1 and could be accumulated in a

single 32-bit integer by separation of the lower order 16-bits from the higher order

16-bits.

A possible direction for accuracy enhancement is to improve objective function

input filtering by applying one of many existing depth hole filling approaches or

even alternative hand detection and segmentation approaches described in [10].

51

Better swarm initialization could also rely on information from blob tracking

phase, so that the initial swarm member is placed on the estimated location of

the moving hand blob and the palm is oriented to align with the principal axes

of the blob. Parallel to this work, we developed a new method for computing

connected component labeling on the GPU while calculating the first and second

order moments of blobs and predicting their positions in consecutive frames that

could be used for this purpose. However, we did not employ the method, which

we call Time Coherent Label Equivalence, because it was not completely tested and

verified at the time of writing.

5.1.2 Limitations

One limiting factor we can anticipate for our system, which is also a limitation of

similar methods is rapid hand motion. The human hand is, after all, capable of

5 m/s translation and 400◦/s rotation, whereas and most RGBD cameras have a

30 Hz [8] framerate. That said, a possible way to counter rapid motion is to track

the hand on multiple levels, using object tracking techniques to make temporal

predictions about hand positioning and orientation and use them to improve swarm

initialization.

The performance of the skin classifier was considered satisfactory, although it

is possible to make it more robust against illumination variations that might be

present in other scenarios by refining our detector with information from other skin

detection datasets, such as the ones listed in [46].

5.2 Contributions

In this work, we did not propose a completely new approach to the problem of

fully articulated hand pose estimation from RGB-D data. Instead, we based our-

selves on an existing approach and produced a complete system that performs hand

tracking. We stemmed from the previously existing work in three broader aspects:

hand detection method, hand model constraints and perturbation, and optimization

details.

On the first matter, instead of a histogram-based per-pixel skin classifier with

semi-assisted training, we used a Gaussian model with parameters estimated from

two open datasets for skin detection. Our detector, however, performs hysteresis

threshold in a similar way. In the description of our detector, we also introduce

a new strategy for choosing the thresholds that is not common in the literature.

Contrary to the other work’s, our detector was implemented in the GPU.

On the second matter, we used a simplified hand model with one less degree of

52

freedom per finger, according to another work on hand modeling that points out

that each such finger DOF is highly correlated to a second one in the same finger.

We also applied a different variation amplitude per model DOF, since some of them

have greater impact on the overall pose than others, a consideration that was not

present

On the third matter, our objective function was modified to deal with a sim-

pler strategy of depth filtering and the weights used for each term of the objective

function differ greatly from the original work. We experimented with many com-

binations of values and found out these provided a better balancing between the

terms, preventing one from shadowing the others.

Although the depth of our analysis was restricted by time constraints, we built a

system that achieves comparable functionality to the reference work and provide a

valuable source of information for future research in the form of this detailed study.

Also, we publish our complete system’s code under open source terms 2 , allowing

the research community to benefit from an existing implementation, which may be

further improved or modified.

5.3 On future directions

As noted by [10], the Kinect’s application is still narrow, due to many implicit

facilitating environment restrictions that are present in the gaming scenario and

experiments performed, such as the persons being far from the device (compensating

for its narrow field of view) and mostly standing parallel to the image plane. Outdoor

scenarios, partial occlusions, fast motion and unpredictable person/object poses and

change of point of view may severely restrict the Kinect’s application in robotic

vision and automated surveillance, for instance. When it comes to hand tracking,

the set of simplifying assumptions we assumed such as the hands being the closest

skin-colored object to the camera, may render the method unusable in real world

scenarios. To the purpose of hand tracking in unrestricted scenarios, there exists no

studies as of now, to the best of our knowledge. An evaluation of this method with

other types of indoor and outdoor depth sensors possessing different characteristics

of precision, noise, field of view and costs could prove useful in such direction.

Combining appearance-based methods with model-based ones, such as this, is an

interesting direction: on one hand, appearance-based approaches are fast and pro-

vide accurate classification of known poses if trained with large enough databases,

allowing to obtain a rough estimate of the overall pose; on the other hand, model-

based methods have elevated computational costs, but if correctly constrained, cap-

ture the details of each observed instance and provide smoother transitions between

2Details on the source code repository are given in Section 1.3.1.

53

consecutive similar instances. Hence, in a hypothetical hybrid system, discrimina-

tive recognition might be employed for initialization, error recovery and auxiliary

pose space restriction, whereas a later generative phase might be used to refine the

pose estimation, track over adjacent frames and even to obtain additional exem-

plars for feedback training of the discriminative recognizer, extending its knowledge

to unknown poses.

It should be emphasized that careful incorporation of anatomic studies, as partly

achieved in this work by means of finger joint constraints, is fundamental in pruning

the search space and that investigating motion capture sequences as in [17] may help

to obtain motion subspaces with reduced dimensionality that give good predictions

of what can be instinctively understood as realistic human motion.

54

Bibliography

[1] OIKONOMIDIS, I., KYRIAZIS, N., ARGYROS, A. A. “Efficient model-based

3D tracking of hand articulations using Kinect”. In: BMVC, v. 1, p. 3,

2011.

[2] “Efficient model-based 3D tracking of hand articulations using Kinect”. https:

//www.youtube.com/watch?v=Fxa43qcm1C4. Accessed: 2016-05-30. Pub-

lished: 2011-06-29.

[3] GAMMA, E., HELM, R., JOHNSON, R., et al. Design Patterns: Elements of

Reusable Object-oriented Software. Boston, MA, USA, Addison-Wesley

Longman Publishing Co., Inc., 1995. ISBN: 0-201-63361-2.

[4] MEYERS, S. Effective Modern C++. O’Reilly Media, 2014. ISBN: 978-1-4919-

0399-5.

[5] SELLERS, G., WRIGHT JR, R. S., HAEMEL, N. OpenGL SuperBible: Com-

prehensive Tutorial and Reference. Addison-Wesley, 2015.

[6] NVIDIA, C. “C Programming Guide, version 7.5”. 2015.

[7] “The MIT license”. https://opensource.org/licenses/MIT. Accessed: 2016-

06-02.

[8] EROL, A., BEBIS, G., NICOLESCU, M., et al. “Vision-based hand pose esti-

mation: A review”, Computer Vision and Image Understanding, v. 108,

n. 1, pp. 52–73, 2007.

[9] RAUTARAY, S. S., AGRAWAL, A. “Vision based hand gesture recognition for

human computer interaction: a survey”, Artificial Intelligence Review,

v. 43, n. 1, pp. 1–54, 2012.

[10] HAN, J., SHAO, L., XU, D., et al. “Enhanced computer vision with microsoft

kinect sensor: A review”, Cybernetics, IEEE Transactions on, v. 43, n. 5,

pp. 1318–1334, 2013.

55

https://www.youtube.com/watch?v=Fxa43qcm1C4
https://www.youtube.com/watch?v=Fxa43qcm1C4
https://opensource.org/licenses/MIT

[11] LEE, J., KUNII, T. L. “Model-based analysis of hand posture”, Computer

Graphics and Applications, IEEE, v. 15, n. 5, pp. 77–86, 1995.

[12] OIKONOMIDIS, I., KYRIAZIS, N., ARGYROS, A. A. “Markerless and ef-

ficient 26-dof hand pose recovery”. In: Computer Vision–ACCV 2010,

Springer, pp. 744–757, 2010.

[13] OIKONOMIDIS, I., KYRIAZIS, N., ARGYROS, A. A. “Tracking the articu-

lated motion of two strongly interacting hands”. In: Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 1862–1869.

IEEE, 2012.

[14] OIKONOMIDIS, I., KYRIAZIS, N., ARGYROS, A., et al. “Full dof tracking

of a hand interacting with an object by modeling occlusions and physi-

cal constraints”. In: Computer Vision (ICCV), 2011 IEEE International

Conference on, pp. 2088–2095. IEEE, 2011.

[15] PADELERIS, P., ZABULIS, X., ARGYROS, A. A. “Head pose estimation on

depth data based on Particle Swarm Optimization”. In: Computer Vision

and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer So-

ciety Conference on, pp. 42–49. IEEE, 2012.

[16] BALLAN, L., TANEJA, A., GALL, J., et al. “Motion capture of hands in

action using discriminative salient points”. In: Computer Vision–ECCV

2012, Springer, pp. 640–653, 2012.

[17] LIN, J., WU, Y., HUANG, T. S. “Modeling the constraints of human hand

motion”. In: Human Motion, 2000. Proceedings. Workshop on, pp. 121–

126. IEEE, 2000.

[18] WU, Y., LIN, J. Y., HUANG, T. S. “Capturing natural hand articulation”. In:

Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE Interna-

tional Conference on, v. 2, pp. 426–432. IEEE, 2001.

[19] ALBRECHT, I., HABER, J., SEIDEL, H.-P. “Construction and animation

of anatomically based human hand models”. In: Proceedings of the 2003

ACM SIGGRAPH/Eurographics symposium on Computer animation, pp.

98–109. Eurographics Association, 2003.

[20] SUEDA, S., KAUFMAN, A., PAI, D. K. “Musculotendon simulation for hand

animation”. In: ACM Transactions on Graphics (TOG), v. 27, p. 83.

ACM, 2008.

56

[21] TRINDADE, P., LOBO, J., BARRETO, J. P. “Hand gesture recognition us-

ing color and depth images enhanced with hand angular pose data”. In:

Multisensor Fusion and Integration for Intelligent Systems (MFI), 2012

IEEE Conference on, pp. 71–76. IEEE, 2012.

[22] ZHANG, Z. “Microsoft kinect sensor and its effect”, MultiMedia, IEEE, v. 19,

n. 2, pp. 4–10, 2012.

[23] YE, M., ZHANG, Q., WANG, L., et al. “A survey on human motion anal-

ysis from depth data”. In: Time-of-Flight and Depth Imaging. Sensors,

Algorithms, and Applications, Springer, pp. 149–187, 2013.

[24] SHOTTON, J., FITZGIBBON, A., COOK, M., et al. “Real-time human pose

recognition in parts from single depth images”. In: Computer Vision and

Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 1297–1304.

IEEE, 2011.

[25] KESKIN, C., KIRAÇ, F., KARA, Y. E., et al. “Hand pose estimation and hand

shape classification using multi-layered randomized decision forests”. In:

Computer Vision–ECCV 2012, Springer, pp. 852–863, 2012.

[26] KESKIN, C., KIRAÇ, F., KARA, Y. E., et al. “Real time hand pose estimation

using depth sensors”. In: Consumer Depth Cameras for Computer Vision,

Springer, pp. 119–137, 2013.

[27] REN, Z., YUAN, J., MENG, J., et al. “Robust part-based hand gesture recog-

nition using kinect sensor”, Multimedia, IEEE Transactions on, v. 15,

n. 5, pp. 1110–1120, 2013.

[28] TARA, R., SANTOSA, P., ADJI, T. “Hand segmentation from depth image

using anthropometric approach in natural interface development”, Int. J.

Sci. Eng. Res, v. 3, n. 5, pp. 1–4, 2012.

[29] LIANG, H., YUAN, J., THALMANN, D. “3D fingertip and palm tracking in

depth image sequences”. In: Proceedings of the 20th ACM international

conference on Multimedia, pp. 785–788. ACM, 2012.

[30] HACKENBERG, G., MCCALL, R., BROLL, W. “Lightweight palm and finger

tracking for real-time 3D gesture control”. In: Virtual Reality Conference

(VR), 2011 IEEE, pp. 19–26. IEEE, 2011.

[31] KAKUMANU, P., MAKROGIANNIS, S., BOURBAKIS, N. “A survey of skin-

color modeling and detection methods”, Pattern recognition, v. 40, n. 3,

pp. 1106–1122, 2007.

57

[32] IGARASHI, T., NISHINO, K., NAYAR, S. K. “The appearance of human skin:

A survey”, Foundations and Trends R© in Computer Graphics and Vision,

v. 3, n. 1, pp. 1–95, 2007.

[33] KHAN, R., HANBURY, A., STÖTTINGER, J., et al. “Color based skin clas-

sification”, Pattern Recognition Letters, v. 33, n. 2, pp. 157–163, 2012.

[34] PHUNG, S. L., BOUZERDOUM, A., CHAI SR, D. “Skin segmentation using

color pixel classification: analysis and comparison”, Pattern Analysis and

Machine Intelligence, IEEE Transactions on, v. 27, n. 1, pp. 148–154,

2005.

[35] VEZHNEVETS, V., SAZONOV, V., ANDREEVA, A. “A survey on pixel-

based skin color detection techniques”. In: Proc. Graphicon, v. 3, pp.

85–92. Moscow, Russia, 2003.

[36] TAYLOR, C. L., SCHWARZ, R. J. “The anatomy and mechanics of the human

hand”, Artificial limbs, v. 2, n. 2, pp. 22–35, 1955.

[37] “The free dictionary”. http://medical-dictionary.thefreedictionary.

com. Accessed: 2016-05-30.

[38] ARGYROS, A. A., LOURAKIS, M. I. “Real-time tracking of multiple skin-

colored objects with a possibly moving camera”. In: Computer Vision-

ECCV 2004, Springer, pp. 368–379, 2004.

[39] KANG, S. B. “Automatic removal of chromatic aberration from a single image”.

In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE

Conference on, pp. 1–8. IEEE, 2007.

[40] EVANS, M. J., ROSENTHAL, J. S. Probability and Statistics: the science of

uncertainty. W.H. Freeman, 2010. ISBN: 978-1429224628.

[41] DUO, C. B. “The Multivariate Gaussian Distribution”. http://cs229.

stanford.edu/section/gaussians.pdf, 2008. Lecture notes on Ma-

chine Learning, Stanford University. Acessed: 2016-05-30.

[42] “Integration by substitution – Application to statistics”. https://en.

wikipedia.org/wiki/Integration_by_substitution#Application_

in_probability. Accessed: 2016-06-02.

[43] ZHU, Q., WU, C.-T., CHENG, K.-T., et al. “An adaptive skin model and its

application to objectionable image filtering”. In: Proceedings of the 12th

annual ACM international conference on Multimedia, pp. 56–63. ACM,

2004.

58

http://medical-dictionary.thefreedictionary.com
http://medical-dictionary.thefreedictionary.com
http://cs229.stanford.edu/section/gaussians.pdf
http://cs229.stanford.edu/section/gaussians.pdf
https://en.wikipedia.org/wiki/Integration_by_substitution#Application_in_probability
https://en.wikipedia.org/wiki/Integration_by_substitution#Application_in_probability
https://en.wikipedia.org/wiki/Integration_by_substitution#Application_in_probability

[44] KALENTEV, O., RAI, A., KEMNITZ, S., et al. “Connected component la-

beling on a 2D grid using CUDA”, Journal of Parallel and Distributed

Computing, v. 71, n. 4, pp. 615–620, 2011.

[45] STAVA, O., BENES, B. “Connected component labeling in CUDA”. In: Wen-

Mei, W. H. (Ed.), GPU computing gems emerald edition, Elsevier, p. 569,

2010.

[46] MORRIS, T. “Skin Locus Based Skin Detection for Gesture Recognition”,

2010.

[47] GENG, J. “Structured-light 3D surface imaging: a tutorial”, Advances in

Optics and Photonics, v. 3, n. 2, pp. 128–160, 2011.

[48] CRUZ, L., LUCIO, D., VELHO, L. “Kinect and rgbd images: Challenges and

applications”. In: Graphics, Patterns and Images Tutorials (SIBGRAPI-

T), 2012 25th SIBGRAPI Conference on, pp. 36–49. IEEE, 2012.

59

Appendix A

The Kinect device

The Kinect sensor’s vision apparatus is comprised of three main components: a

structured infrared (IR) light projector, an infrared camera and a visible light cam-

era, both producing frames at the resolution of 640 × 480 pixels and frequency of

30 Hz. The structured IR pattern projected onto the scene is reflected and captured

by the IR camera, which allows for deducing the depth at every pixel, a process more

thoroughly described by [47]. A typical Kinect sensor is represented in Figure A.1.

The Kinect sensor is also equipped with a microphone array and a tilt motor, which

were not used in our work.

Video frames are 24-bit RGB-encoded 640× 480 pixel images and depth frames

are 16-bit images of the same size, where only the 11 lower bits are actually used,

providing 2048 levels of sensitivity. Since distances are measured using infrared

light, the Kinect does not operate correctly in an outdoor setting, where sunlight

interferes with the structured light pattern [48]. Because of the 7.5 cm gap between

the IR emitter and camera, a lot of blind spots are produced by occluding objects,

resulting in black shadows in the depth image where the depth value is unknown.

Video and depth cameras are also separated by a 2.5 cm gap. The depth frame

stores depth values as integral values in millimeters and the operation range of the

camera is from 0.4m to 3.5m. Table A.1 shows the intrinsic parameters of the depth

camera.

Figure A.1: Depiction of a Kinect Sensor.

From left to right, the gray circles portray: the infrared projector, the RGB camera and
the infrared camera.

60

Field of view Clipping planes
fx fy zN zF
58◦ 45◦ 0.4 m 8 m

Table A.1: Kinect depth camera intrinsic parameters

61

Appendix B

Parameters

In this appendix, we list the default parameters we applied during our experiments.

The hysteresis thresholds used for skin detection were rS = 0.4 and rW = 0.65.

The actual Gaussian model parameters calculated for FSD and IBTD are listed

in Table B.1. We used the parameters estimated from the combination of both

datasets.

The number of generations used was g = 16 and the number of particles per

generation was p = 16. Half of the particles joints are disturbed every ir = 3 itera-

tions. Pose variations generated at every first iteration from the first swarm member

included different amplitudes for each type of DOF. The maximum amplitudes are:

for θAA, 0.15 radians; for θFE, 0.15 radians; for quaternion components, 0.5; for

translation in the xy plane (parallel to the image plane), 3 cm; for translation in

the z direction (perpendicular to image plane), 1, 5 cm. All these amplitudes are

multiplied by a common uniformly distributed scaling factor in the range [0, 0.3].

Figure 3.10 shows the initial pose used for the first swarm of the first frame.

The energy coefficients of F are: λ1 = 0.006, λ2 = 1.0 and λ3 = 0.5. Division by

zero in E1 is avoided by setting ε1 = 0.001. The cognitive and social components

have values c1 = 2.8 and c2 = 1.3, respectively. The absolute depth clipping range we

applied in our modified function was [zmin, zmax] = [0.4, 0.9] m. Other parameters

µ Σ[
113.7
156.0

] [
69.6 −73.4
−73.4 153.3

]
(a) FSD only

µ Σ[
104.3
166.9

] [
86.9 −87.1
−87.1 181.6

]
(b) IBTD only

µ Σ[
112.8
157.0

] [
78.4 −83.0
−83.0 165.5

]
(c) FSD and IBTD combined

Table B.1: Gaussian skin model parameters

62

used for energy calculation are given as follows: τM1 = 4 cm, τM2 = 4 cm and

τM3 = 5 cm.

63

(a
)

In
it

ia
l

h
a
n

d
p

o
se

ov
er

la
y
s

th
e

im
a
g
e

th
a
t

w
a
s

u
se

d
fo

r
co

n
fi

g
u

ri
n

g
it

.
(b

)
In

it
ia

l
h

an
d

p
os

e
ov

er
la

y
s

th
e

fi
rs

t
fr

am
e

of
th

e
fi

rs
t

v
id

eo
se

q
u

en
ce

.
(c

)
In

it
ia

l
h

an
d

p
os

e
ov

er
la

y
s

th
e

fi
rs

t
fr

am
e

of
th

e
fi

rs
t

se
co

n
d

se
q
u

en
ce

.

F
ig

u
re

B
.1

:
In

it
ia

l
h
an

d
p

os
e

fo
r

tr
ac

k
in

g
In

it
ia

l
h
an

d
p

os
e

u
se

d
as

fi
rs

t
sw

ar
m

m
em

b
er

in
al

l
te

st
ed

v
id

eo
se

q
u
en

ce
s.

T
h
e

ot
h
er
p
−

1
sw

ar
m

m
em

b
er

s
ar

e
ge

n
er

at
ed

as
ra

n
d
om

va
ri

at
io

n
s

of
th

is
p

os
e.

64

Appendix C

Demonstrations

In this appendix, we demonstrate the auxiliary result on the computation of the

cumulative distribution of the Gaussian distribution, used in Section 3.2.3.

Theorem 1. Let Z be a random vector variable with a 2D standard Gaussian dis-

tribution. The cumulative probability pa of drawing a point Z from this distribution,

such that it is inside a circle of radius a with center [0 0]ᵀ, is

pa = 1− e−
a2

2

Proof. The probability density function of Z, previously presented in Equation 3.5

for the general nD case, is

φ(z) =
1

2π
exp

(
−1

2
zᵀz

)

and the circle of radius a and center [0 0]ᵀ is the set of points Sa =

{x ∈ R2 : |x| ≤ a}. Hence, the cumulative distribution of drawing a random point

Z inside Sa is given by the area integral

pa = P (Z ∈ Sa) =

∫
Sa

φ(z) dSa =

which, expressed in polar coordinates, becomes

pa =

∫ 0

a

∫ 2π

0

rφ(z) dθ dr =

∫ 0

a

∫ 2π

0

r
e−r

2/2

2π
dθ dr

since r2 = zᵀz. By solving the last integral to the end, we obtain

pa =

∫ 0

a

re−r
2/2 dr = e−r

2/2
∣∣∣a
0

= 1− e−a2/2

65

as stated. Note: The integration limits for the radius r are chosen such that, if we

compute the limit integral from ∞ to 0, that is, over the whole R2, we get the value

of 1, as expected.

66

	List of Figures
	List of Tables
	Introduction
	Objectives
	Methodology
	Results and contributions
	Source code

	Related work
	Vision-based hand pose estimation
	Model-based hand pose estimation
	Hand modeling
	Kinect-based pose estimation
	Skin detection and hand segmentation

	Overview of main references
	Hand kinematics modeling
	Hand shape modeling
	Hand detection
	Pose estimation

	Method description
	Acquisition and preprocessing
	Hand detection
	Skin detector
	Skin classifier training
	Hand isolation

	Hand modeling
	Kinematics modeling
	Shape modeling

	Hand rendering
	Pose estimation
	Computation of generations
	Tracking initialization

	Discussion
	Experiments
	Analysis
	On the effectiveness
	On the efficiency

	Conclusion
	On the results
	Possible immediate improvements
	Limitations

	Contributions
	On future directions

	Bibliography
	The Kinect device
	Parameters
	Demonstrations

