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CONSTRUÇÃO DE HIERARQUIA E RENDERIZAÇÃO CONCOMITANTES

DE NUVENS DE PONTOS EXTENSAS
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Maio/2018

Orientadores: Claudio Esperança
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As abordagens atuais para renderizar nuvens de pontos extensas envolvem um

estágio de pré-processamento extenuante em que uma estrutura de dados hierárquica

é criada antes da renderização. Esses algoritmos não consideram apresentar os da-

dos antes da conclusão da construção hierárquica. Neste trabalho, apresentamos

OMiCroN – acrônimo em inglês para Criação de Hierarquia Multipasso e Obliqua

enquanto Navegando – que é o primeiro algoritmo capaz de exibir imediatamente

renderizações parciais da geometria, desde que a esta seja disponibilizada na ordem

de Morton como um fluxo. Ao usar um algoritmo de ordenação parcial, o OMiCroN

é capaz de ordenar os dados, construir a hierarquia e renderizar em paralelo, o que

pode começar assim que o primeiro prefixo ordenado dos dados estiver dispońıvel.

Na prática, a primeira renderização parcial só precisa aguardar a leitura de toda a

geometria não ordenada a partir do disco. OMiCroN também é o primeiro algoritmo

a implementar uma abordagem de renderização de baixo para cima, fornecendo de-

talhes completos desde o ińıcio, de forma diferente das abordagens de cima para

baixo atuais que começam a partir de uma visão geral dos dados, fornecendo de-

talhes completos mais tarde no processo. OMiCroN também pode ser usado para

apresentar feedback de renderização do processo de criação da hierarquia. Essas

caracteŕısticas são posśıveis usando o “corte obĺıquo”, uma nova estrutura de dados

que separa porções renderizáveis das porções não renderizáveis da hierarquia.
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Current approaches for rendering large point clouds involve a strenuous prepro-

cessing stage where a hierarchical data-structure is created before rendering. These

algorithms do not consider presenting data before the hierarchy construction is fin-

ished. In this work we present OMiCroN – Oblique Multipass Hierarchy Creation

while Navigating – which is the first algorithm capable of immediately displaying

partial renders of the geometry, provided the geometry is made available in Morton

order as a stream. By using a pipeline sort algorithm, OMiCroN is capable of par-

allel data sorting, hierarchy construction, and rendering, which can start as soon as

the first sorted prefix of the data is available. In practice, the first partial rendering

must only wait for the whole unsorted geometry to be read from disk. OMiCroN is

also the first algorithm to implement a bottom-up rendering approach, providing full

detail at the beginning, unlike current top-down approaches, which start from an

overview of the data, providing full detail later in the process. OMiCroN can also be

used to present rendering feedback of the hierarchy creation process. These features

are made possible using an “oblique cut”, a novel data structure that separates the

renderable from the non-renderable portions of the hierarchy.
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Chapter 1

Introduction

In recent years, the improvements in acquisition devices and techniques have led to

the generation of huge point clouds using automatic or semi-automatic approaches.

This phenomenon has also led to a significant increase in complexity of tasks and

computational demand when dealing with such large datasets.

Rendering large point clouds is a well-studied topic in Computer Graphics. The

usual approach to solve this problem is to build a hierarchical multiresolution datas-

tructure for spatial organization of the data, allowing fast culling and smart choices

of subsets that fit a specified resolution or level-of-detail (LOD). However, pre-

processing times are incommensurate with the actual time to render them. This

preprocessing may require many minutes or even hours for large datasets, depend-

ing on the algorithm and the parameters used. Long preprocessing times delay the

evaluation of the acquired data, which in turn may compromise an efficient work-

flow involving dataset acquisition and evaluation. Many digitization campaigns,

specially those in situ, would greatly benefit from fast data evaluation, involving

just minimal preprocessing delays. Additionally, a good feedback of the hierarchy

creation process would be very useful for implementors and systems that use the

point cloud hierarchy as a tool for other operations. For instance, a user might stop

the hierarchy building after noticing problem in the data as the initial samples are

viewed.

The time required for building a hierarchy is related to the nature of the algo-

rithm, which can be incremental, bottom-up or top-down. In particular, incremental

methods can start building the structure as soon as the first primitive is available,

as is the case of a Bounding Volume Hierarchy (BVH), that can be constructed

incrementally by insertion. On the other hand, bottom-up and top-down meth-

ods require information about the entire dataset before the building process starts.

Nonetheless, a significant drawback of incremental methods is that the quality of the

resulting structure is totally dependent on the data order, which may result in very

unbalanced hierarchies [7, 8]. This property is the main reason why such algorithms
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have been mostly left aside by the scientific community. One way to improve the

quality of the hierarchy is to shuffle the data beforehand [9]; yet, shuffling the data

defeats the main purpose of using incremental methods, i.e., starting the hierarchy

construction as early as possible. Another idea to improve the hierarchy created by

incremental methods is to adaptively rebuild parts of the hierarchy [8], which can

result in hierarchies with quality comparable to the best top-down methods but is

less effective for some datasets. Moreover, the authors acknowledge that even its

parallel version can be several times slower than an earlier top-down algorithm [10].

Therefore, excluding incremental methods, the time needed for reading a dataset is

clearly a lower bound for the preprocessing time required by a high quality hierarchy

constructor for large datasets.

Current approaches do not support a concomitant visualization of the hierarchy

building process. This is understandable if the build process is too time-consuming,

but even supposing that the creation time is relatively short, rendering and building

would necessarily have to synchronize their access to the incomplete hierarchy. This

synchronization problem is not trivial. Assuming unsorted data, a rendering thread

must cope with the fact that any node of the hierarchy can be changed by a point

insertion operation as it performs a traversal or sends data to GPU. Conversely, a

hierarchy construction thread must preclude other threads from accessing regions

of the hierarchy being modified. If we consider that a point insertion can change

the hierarchy structure by creating new nodes and deleting others, and that current

rendering algorithms apply optimization structures for hierarchy traversal accelera-

tion, we may grasp the depth of the problem. Naive approaches to solve it result in

too many possibilities for inconsistencies between the hierarchy creation, traversal

acceleration structure management and GPU data loading. The locks needed to

synchronize all these tasks might lead to prohibitive delays, mainly in the rendering

thread which is expected to achieve realtime performance.

In this work we present OMiCroN (Oblique Multipass Hierarchy Creation while

Navigating), a novel stream-based approach for constructing Octrees for large point

clouds. Our method aims at presenting data to the user as soon as possible, and, to

the best of our knowledge, it is the first capable of sorting a point cloud, construct-

ing a LOD-capable hierarchy, and partially rendering it in parallel. By using the

concept of oblique cuts, the synchronization between the rendering and hierarchy

building threads is restricted to a small set of nodes. Furthermore, differently from

previous methods, our algorithm is able to partially render large point clouds in full

detail from the very start of the process (bottom-up rendering, instead of top-down).

In practice, the first full-detail partial rendering must only wait for the whole un-

sorted geometry to be read from secondary storage. Consequently, OMiCroN can

start rendering right after the dataset is read, leading to the benefits of early data
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evaluation and the best possible feedback of the process. It is also suitable for cre-

ating Octrees on-the-fly in environments where data transferring is a bottleneck. In

this case, transferring the input point data, constructing a hierarchy on-the-fly, and

rendering it is clearly preferable to transferring a complete spatial hierarchy several

times larger. Figure 1.1 shows the overall idea of OMiCroN’s objective.

Figure 1.1: A sequence of renderings at different stages of hierarchy creation. OMi-
CroN is used for sorting, creating and rendering the hierarchy in parallel.

The technical contributions of this work are:

• it introduces the concept of Hierarchy Oblique Cuts, that allows parallel data

sorting, spatial hierarchy construction and rendering;

• it restricts the preprocessing of input data to a very fast and flexible Morton

code based partial sort;

• it allows for on-the-fly Octree construction for large point clouds;

• it renders full detail data from the very beginning as a consequence of bottom-

up hierarchy construction;

• it provides immediate visual feedback of the hierarchy creation process.

This thesis is organized in the following manner. In Chapter 2 a literature review

is presented. We start in Section 2.1 with an overview of the necessary background

for discussing the problem at hand and for describing OMiCroN. In Section 2.2 we

review the currently stablished techniques for construction of hierarchical structures

for large point clouds with the objective to scope OMiCroN’s scientifical contribu-

tion. In Chapter 3 we describe our method, starting with an overview and proceed-

ing with an in-depth discussion about the two central concepts of Hierarchy Oblique

Cuts and Oblique Hierarchy Cut Fronts presented in Sections 3.1 and 3.2, respec-

tively. In Section 3.3 we present the parallel version of the OMiCroN algorithm,

describing a proof-of-concept application for processing and rendering large point

3



clouds. In Chapter 4 we describe the experiments to measure the preprocessing,

rendering and memory efficiency of the algorithm. Finally, conclusions, limitations

and future work directions are presented in Chapter 5.
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Chapter 2

Literature review

In this Chapter we review current literature about large point cloud rendering, dis-

cussing why a novel approach such as OMiCroN is necessary. We also state its

contributions to the field. Starting by a review of background concepts necessary

for a better understanding of the problem, we develop to a discussion about mul-

tiresolution and LOD structures, establishing a comparative argument about the

lack of a stream-and-feedback-based algorithm in the field.

2.1 Background

Our work depends on several major concepts: Point Clouds and Splatting; Space

Filling Curves, in particular the Z-order curve; Hierarchical Spatial Data Structures,

in special Octrees; and Rendering Fronts. The theory behind them is summarized

in this section.

2.1.1 Point Clouds and Splatting

While the use of points as rendering primitives was introduced very early in Com-

puter Graphics [11, 12], their widespread adoption only occurred much later, as

discussed on extensive survey literature [13–18]. Many algorithms were presented

from that period on, proposing improved image quality by changes in the kernel

logic, better spatial management by the use of multiresolution and LOD structures,

and integration of the out-of-core paradigm, resulting in systems that can handle

extremelly large point clouds.

A naive algorithm for rendering point-sampled surfaces is to project them on an

image and assigning the point colors to the pixels closest to their projections. The

problem of such algorithm is the presence of holes in the resulting image unless the

surface is sampled at pixel scale in all surfaces. Additionally, the final color of a

pixel would be dependent of projection order in that algorithm.
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Splatting is a technique created to solve the aforementioned problems, rendering

images from points independently of density and projection order. The concept was

introduced in the scope of point-based rendering by [19] and [20]. [19] brought the

concept from the scope of volumetric rendering [21], while [20] used the term Surfel

to define the same idea. The final popularization of splats came with the proposal of

a robust mathematical framework for rendering splats [22]. The main idea is quite

simple and consists of distributing the properties of the points among their projected

neighborhood. The contribution of each point in a pixel must be weighted by the

distance between the pixel and the point center so more distant points contribute

less than closer ones. This is done by using a bidimensional gaussian filter centered

at the point position, which is excelent for such task because of its quick decay from

its center.

2.1.2 Space Filling Curves

Space filling curves are curves whose range contains an entire square, cube or more

generally an n-dimensional hypercube. A curve of this type defines a map from its

associated hypercube into an 1-dimensional interval. Its construction is iterative

and each iteration results in a curve containing more of the hypercube. In the limit

of the iterations the curve contains the entire associated space. Peano, Hilbert,

Sierpińki, Z-order, Schoenberg and Jordan are examples of such curves. They differ

in how the iterations are performed. Figure 2.1 shows the first iterations of Peano,

Hilbert and Z-order curves for a square. A detailed discussion about space filling

curves can be found in [23]. In this work we will focus on Z-order curves.

(a) Peano curve. As in [24]. (b) Hilbert curve. As in [25]. (c) Z-order curve. As in [26].

Figure 2.1: Example of space filling curves for a square.

Morton [27] proposed a linearization of 2D grids, later generalized to n-

dimensional grids. It results in a z-shaped space-filling curve, called the Z-order

curve. The order in which the grid cells are visited by following this curve is called

Morton order or Z-order. The associated Morton code for each cell can be computed
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directly from the grid coordinates by interleaving their bits. Figure 2.2 illustrates

the above concepts.

(a) Z-order curve. (b) Relationship between Morton order
and grid coordinates.

(c) Morton order and associated hierarchical representation. Order is indicated inside nodes, coor-
dinates and Morton codes outside them. The Morton code for the n-th child of a parent node with
code x is x concatenated with the binary (bit-interleaving) representation of n. Coordinate values
and interleaved bits share color. Parent code is between curly brackets and node index between
square brackets. A prefix bit is used to avoid ambiguity.

Figure 2.2: Z-Order and Morton code illustrative example.

2.1.3 Hierarchical Spatial Data Structures

Hierarchical spatial data structures are used for structured organization of space

based on recursive decomposition. They are very important representation tech-

niques used in Computer Graphics, Image Processing and Robotics.

An hierarchical representation of data is useful because it enables focus on subsets

of it. This property results in an efficient representation, improving execution times.

Much of this efficiency comes from their ability to eliminate large portions of the

space from computation, a process known as culling. Indeed, a test in the shallower
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parts of the hierarchy can save an exponential number of tests in deeper parts of the

hierarchy because of the hierarchical nature of the datastructure. Another use of

hierarchies is to fastly and adaptively query coarse or fine-grained instances of the

data, allowing minimization of memory footprints. This is known as level of detail

(LOD) and is extensively used in realtime applications.

Hierarhical spatial data structures are guided by a regular or irregular decompo-

sition principle. Regular hierarchical structures subdivide the space in equal parts

on each level, while irregular structures subdivide based on input. The resolution of

the structure is the number of times it is subdivided and can be fixed beforehand,

or it may be dependent of properties of the data. Examples of hierarchical spatial

structures include Quadtrees, Octrees, Kd-trees, Range trees and Binary Space Par-

titions, to name a few. An overview of several of these kinds is given in the next

sections. A more extensive discussion about Hierarchical Spatial Data Structures

and their applications can be found in [28] and [29].

Quadtrees and Octrees

Quadtrees [30] recursively subdivide 2-dimensional space in four square or rect-

angular quadrants. The data structure consists of a tree with nodes with exact

four children and leaves. There are several types of quadtrees based on what kind

of data they represent. Examples include the Region Quadtree, Point Quadtree,

Point-region Quadtree, Edge Quadtree and Polygonal map Quadtree. Figure 2.3

shows an example of a Quadtree and an extensive discussion about them can be

found in [31].

Octrees [32] are the three-dimension analog of Quadtrees. They recursively sub-

divide the space in eight octants, resulting in a tree with eight children and leaves.

Figure 2.4 shows an Octree.

1 2

34

1 2 3 4

8 x 8

4 x 4

2 x 2

1 pixel

Figure 2.3: 8x8 Bitmap represented by a compressed quadtree. Numbers denote
order of nodes. As in [1].
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Figure 2.4: A recursive subdivision of a cube into octants (left) and the correspond-
ing octree (right). As in [2].

Kd-trees

A Kd-tree (short for k-dimensional tree) [33] is a structure for recursive subdivision

of a k-dimensional space. It consists of a binary tree, with each non-leaf node

corresponding to a subdivision in a dimension. This subdivision can be tought as

an hyperplane cutting that dimension in two half-spaces. The resulting two half-

spaces are represented by the two children of that node. Leaves contain the actual

data, grouped by regions resulted from all subdivisions done in the traversal from

root to them. Figure 2.5 contains an example of a Kd-tree for a point set. Kd-tree

applications include range searches and nearest neighbor searches.

The construction of a Kd-tree revolves around choosing the hyperplanes. There

are many possible ways to do such task. Given the flexibilty of the data structure,

the construction can be customized to fit better a specific problem at hand. However,

the canonical method is to sort the points in an axis of a dimension and select the

hyperplane to be the median of the points in that axis. This procedure is then

applyed recursively for the points in each half-space of the generated hyperplane,

cycling the dimension axis. The recursion ends when a threshold of number of

points per node or recursion depth is achieved. This algorithm results in a balanced

Kd-tree, in which all leaves have approximately the same depth.

Operations as point insertion and removal are also defined. The insertion can be

done by traversing the Kd-tree, testing in which half-planes the point lays for each

hyperplane encountered. However, this procedure can increase the depth of the tree,

resulting in imbalance and worse performance. If the tree becomes too unbalanced,

it must be necessary to reconstruct it. It is necessary because the traditional tree

rotation technique used to balance binary trees does not work in this case, since Kd-

trees are multidimensional. Removal can be done by traversing the tree in search of
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Figure 2.5: k-d tree decomposition for the point set {(2,3), (5,4), (9,6), (4,7), (8,1),
(7,2)} (as in [3]) and the resulting kd-tree (as in [4]).

the node where the point belongs and recreating all nodes that descend this one.

The same hierarchical subdivision achieved by Quadtrees and Octrees can be

done using Kd-trees. For that it suffices to choose the hyperplane always in the half

of the current half-space.

Binary Space Partitions (BSPs)

Binary Space Partitioning [34, 35] is the generalization of the binary subdivision of

space. As such, it generalizes Quadtrees, Octrees, Kd-trees and any other Hierarchi-

cal Spatial Data Structure that can be reduced to a binary subdivision procedure.

BSPs do not restrict the orientation of the subdivision hyperplanes in any way. The

hyperplanes are totally dependent on the purpose of the subdivision. Applications

of BSPs include tests for fast mesh culling or sorting in realtime applications. For

example, they are vastly used in games to define interiors, restrict gameplay area or

to sort objects back to front in respect with camera.

An example of BSP for ordering line segments for correct rendering given a

viewing position V is given in Figure 2.6. The technique used for such task is

known as the painter’s algorithm and consists of rendering the segments starting

from the background and proceeding until the foreground is reached. A BSP tree

is constructed using the orientation of each segment as a partition plane. This task

also subdivides the segments into smaller ones for which the visibility query can be

answered without ambiguity. The rendering is done by a recursive traversal of the

BSP tree, drawing first the segments that are on the oposite side of the one where

V is in, then the partitioning segment and finally the ones on the same side as V .

The drawback of BSPs is that its construction is costly in comparison with other
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Figure 2.6: A BSP tree for correct drawing of line segments using the painter’s
algorithm. As in [5].

less-generic approaches. Usually BSPs are calculated in preprocessing steps in order

to increase performance.

A final remark about Hierarchical Spatial Data Structures is that Morton codes

extend naturally to regular spatial subdivision schemes, thus they are usually used

in conjunction with structures such as Octrees and regular Kd-trees. Figure 2.2

illustrates an Octree with an embedded Morton code curve, and its associated hier-

archical representation.

2.1.4 Rendering Front

Front tracking [36] is a technique used to optimize sequential traversals of hierar-

chies by exploration of spatial and temporal coherence. This approach has been

successfully applied in many works [37–39]. It consists of starting the traversal at

the nodes where it stopped in the preceding frame instead of starting at the root

node for every new frame. The nodes from which the traversal starts compose the

front. A Rendering Front is a front used in a hierarchical structure for rendering

purposes.

Fronts have two basic operators: prune and branch. The prune operator traverses

the hierarchy up, removing a group of sibling nodes from the front and inserting their

parent. The branch operator works in the opposite direction, by removing a node

from the front and inserting its children. Figure 2.7 depicts a front and the two

operators.

2.2 Large point cloud rendering

QSplat [19] is the seminal reference work on large point cloud rendering. It is based

on an out-of-core hierarchy of bounding spheres, which is traversed to render the

points. Since its main limitation was the extensive CPU usage, QSplat was followed

by works focused on loading more work onto the GPU. For example, Sequential

Point Trees [40] introduced adaptive rendering completely on the graphics card by
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(a) A front and operations to be per-
formed.

(b) The front after the prune and branch
operations.

Figure 2.7: Rendering Front example.

defining an octree linearization that can be traversed efficiently using the GPU archi-

tecture. Other methods used approaches relying on the out-of-core paradigm, such

as XSplat [41] and Instant Points [42]. XSplat proposed a paginated multiresolution

point-octree hierarchy with virtual memory mapping, while Instant Points extended

Sequential Point Trees by nesting linearized octrees to define an out-of-core system.

Layered Point Clouds [43] proposed a binary tree of precomputed object-space point

cloud blocks that is traversed to adapt sample densities according to the projected

size in the image. Wand et al. [44] presented an out-of-core octree-based renderer

capable of editing large point clouds and Bettio et al. [45] implemented a kd-tree-

based system for network distribution, exploration and linkage of multimedia layers

in large point clouds. Other works focused on parallelism using multiple machines

to speed-up large model processing or to render on wall displays using triangles,

points, or both [46–50].

More recently, relatively few works have focused on further improving the ren-

dering of large point clouds, such as the method by Lukac et al. [51]. Instead, more

effort has been concentrated on using established techniques in domains that require

the visualization of large datasets as a tool for other purposes. For example, city

visualization using aerial LIDAR [52, 53], sonar data visualization [54] and, more

prominently, virtual reality [55–58].

An important discussion concerns which approach best exploits parallelism when

creating a hierarchy. A good way to address this question is to study GPU algo-

rithms, which must rely on smart problem modeling to achieve maximum degree of

data independency, increasing throughput in a GPU manycore environment. Kar-

ras [59] made an in-depth discussion about this subject. His major criticism of other

methods is that top-down approaches achieve a low degree of parallelism at the top

levels of the tree, generating underutilization of processing resources at early stages

of hierarchy construction. Bottom-up methods do not suffer from this problem be-
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cause the number of nodes grows exponentially with the hierarchy depth, providing

sufficient data independency and a good degree of parallelism.

While the aforementioned papers present very useful and clever methods to im-

plement or use large point cloud rendering, none of them considers presenting data to

the user before the full hierarchy is created. For example, implementors of systems

that use large point cloud rendering as a tool could use the visual feedback given by

the algorithm in order to check if the data is presented properly, without having to

wait for the full hierarchy to be available. Additionally, in environments where data

transfer is a bottleneck, the input data could be transfered and the hierarchy con-

structed on-the-fly, instead of transferring the full hierarchy which is several times

larger. Another important point is that all algorithms for large point cloud render-

ing start by presenting data top-down, at the coarser levels of the hierarchy. While

this initial presentation is useful for providing an overview of the model, there are

use cases where early full detail inspection of parts of the data would be preferred.

In the usual top-down rendering approach, full detail is available only much later in

the process, after the hierarchy is fairly well populated. For example, if the goal is to

evaluate the quality of the model, rendering lower resolution versions early may not

be useful at all. Since bottom-up approaches provide good parallelism degrees early

and the GPU’s memory is initially empty, why not render the model in full detail

from the beginning, working upwards in the hierarchy as coarser nodes are available

and needed? OMiCroN was designed with these observations in mind. The result is

a very flexible algorithm, focused on presenting full-detail data to the user as soon

as possible.
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Chapter 3

OMiCroN - Oblique Multipass

Hierarchy Creation while

Navigating

The main idea behind OMiCroN is simple: maintain a flexible data-structure to

represent incomplete hierarchies that works in a streaming fashion. For this purpose,

we define two main operators: concatenate and fix (Figure 3.1). Starting from

an initial (possibly empty) renderable hierarchy, nodes from the maximum level

are inserted using the concatenate operator. Then, the hierarchy is evaluated in a

bottom-up manner, inserting ancestors of the concatenated nodes into the renderable

hierarchy using the fix operator. These two operators ensure that at least one

part of the hierarchy is ready for rendering while the rest is being constructed in

parallel. With this simple stream-based approach, not only latency is hidden, but

it allows obtaining the best possible realtime feedback while the data-structure is

being constructed, i.e., the actual rendering. Next, we formally detail the operators

and how OMiCroN works.

3.1 Oblique Hierarchy Cuts

OMiCroN is based on the novel concept of Oblique Hierarchy Cut which we in-

troduce here. Given a conceptual expected hierarchy H, with depth lmax, an

Oblique Hierarchy Cut C consists of a delimiting Morton code mC and a set of

lists LC = {LC,k, LC,k+1, · · · , LC,lmax}, where k is the shallowest level of the hier-

archy present in the cut. Each node N is uniquely identified by its Morton code

mN and these two concepts are interchangeable from now on. Let also span(x) be

a function that returns the maximum Morton code at level lmax of a supposedly

full subtree rooted by Morton code x (see Figure 3.2). C also has the following
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important invariants (see Figure 3.3):

1.1 mC has level lmax.

1.2 LC,l contains subtrees of LC rooted by nodes at level l.

1.3 All subtrees in LC are disjoint.

1.4 LC,l is always sorted in Morton order.

1.5 All nodes N with span(mN) ≤ mC are in one of the subtrees in LC .

We now formally define the two operators, concatenate and fix, as well as the

important concept of Placeholder nodes.

3.1.1 Operator Concatenate

The operator concatenate is defined as C ′ = concatenate(C, {x0, · · · , xn}) with

mC < x0 < ... < xn. This operator incorporates new lmax level leaf nodes {x0, ..., xn}
to C, resulting in a new cut C ′. The operator itself is simple and consists of con-

catenating all new nodes in a list LC,lmax , resulting in LC′,lmax . This operator is

illustrated in Figure 3.3.

In order for C ′ to be an Oblique Hierarchy Cut, all invariants must hold. In-

variant 1.1 can be maintained by letting mC′ = xn. Invariant 1.2 holds by the

definition of concatenate, since the insertion of the leaf nodes occurs at the cor-

rect list LC,lmax at level lmax. Invariants 1.3 and 1.4 are ensured by the fact that

mC < x0 < ... < xn, also established in the definition of concatenate. Invariant 1.5,

however, does not hold, since some of the ancestors Ax of the new nodes {x0, ..., xn}
may have mC < span(Ax) ≤ mC′ , but are not in any subtree of LC′ after con-

catenation. In fact, it would be absurd if they were, since all nodes NC in C have

(a) Initial (possibly
empty) renderable hi-
erarchy and concate-
nate operator.

(b) The fix operator:
node ancestors are in-
serted into the hierar-
chy.

(c) After the fix op-
eration the render-
able hierarchy is ex-
panded.

Figure 3.1: OMiCroN overview. A renderable hierarchy is maintained while inserting
incoming nodes in parallel. This cycle is repeated until the whole hierarchy is
constructed.
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Figure 3.2: The function span(x). It returns the morton code of the rightmost
descendant of x in a supposedly full subtree. In other words, it returns the maximum
possible morton code of a subtree rooted by x at the morton curve of level lmax. In
this example, span(root) = 63, as the nodes marked in red show.

span(NC) ≤ mC (invariant 1.5), mC < mC′ , and the concatenate operator only

inserts nodes greater than mC at level lmax.

3.1.2 Operator Fix

To resolve invariant 1.5, we define the C ′′ = fix(C ′) operator, whose purpose is to

insert the offending nodes in subtrees of LC′ , resulting in LC′′ , while maintaining all

other invariants intact. To achieve this, fix first defines the set of offending nodes A∗x

as a subset of Ax with span(A∗x) ≤ mC′ . Second, it identifies all subtree roots in A∗x

whose parents are not in A∗x. Let S be the set of such parent nodes. To identify these

subtrees, the lists are processed in reverse order, that is, beginning with LC′,lmax .

For each list, its root nodes are visited in Morton order. The evaluation of a list LC′,l

works in the following manner: identify the sibling root nodes in LC′,l; check if their

parent is in A∗x; create a new subtree rooted by their parents at level l−1; and move

the subtrees from LC′,l to their respective parent subtrees in LC′,l−1. Note, however,

that if the parent is in S neither the new subtree is created nor its children subtrees

are moved. The resulting LC′′ will have, thus, only subtrees rooted at nodes whose

parents are in S.

In order to guarantee that fix is robust enough, all invariants must be checked

for correctness after the operation. Since no new lmax level nodes are inserted by fix,

we let mC′′ = mC′ and invariant 1.1 is ensured. Invariant 1.2 holds because the A∗x

nodes are inserted in LC′ at the same level they are in H. Regarding invariant 1.3,

the nodes in A∗x are unique and they were not in C ′, since the only nodes NC′ that

had span(NC′) > mC were inserted at level lmax by the concatenate operator. Thus,
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Figure 3.3: An example of Oblique Hierarchy Cut and operators concatenate and
fix. A cut C is defined by a delimiting Morton code mC and a list of roots per
level LC (a). The concatenate operator inserts new roots x0 and x1 at the deepest
level lmax, resulting in cut C ′ (b). Invariant 1.5 does not hold for C ′ and operator
fix is used to traverse subtrees bottom-up, inserting nodes until the boundary S is
reached. It results in cut C ′′ for which all invariants hold.
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this invariant holds. Since the subtrees inserted by fix are evaluated in Morton order,

they are also inserted in this order, maintaining invariant 1.4. Lastly, invariant 1.5

is ensured because the subtrees inserted by fix are rooted by nodes whose parents

are in S, and S is outside of A∗x, mC′′ < span(S), by the definition of A∗x. Thus S

forms a node boundary outside cut C ′′. The fix operator is illustrated in Figure 3.3.

3.1.3 Placeholders

According to the aforementioned definition of Oblique Hierarchy Cut, H can only

have leaves at level lmax, since the concatenate operator only inserts nodes at this

level. Leaves could be inserted into other levels directly, but it would make it difficult

for fix to efficiently maintain invariant 1.4 since the lists LC′ are independent and

evaluated in a bottom-up manner. To address this issue, the concept of placeholder

is defined. A placeholder is an empty node at a given level representing a node at

a shallower level. More precisely, given a node N at level l, its placeholder PN,l+i

at level l + i is defined as the rightmost possible descendant of N at level l + i in a

supposedly full tree. In other words, the Morton code of PN,l+i is mN followed by

a bitmask of three 1’s for each one of the m additional levels. Note that, with this

definition, PN,lmax = span(N).

The use of placeholders enables Oblique Hierarchy Cuts to be used with any

octree. A leaf X in H with level l < lmax is represented by placeholder PX,i such

that l < i ≤ lmax when inserting the subtree of level i at LC′
i
. Placeholders are used

as roots of degenerate subtrees, since there is no purpose for them inside subtrees.

Even if not meaningful for H, placeholders ensure invariant 1.4 in fix until level l is

reached. Figure 3.4 shows the concept of placeholders.

3.1.4 Sequence of Oblique Hierarchy Cuts

Intuitively, a sequence of Oblique Hierarchy Cuts Ci resulting from sequentially

applying operators concatenate and fix until no more leaf nodes or placeholders are

left for insertion results in an oblique sweep of H, as can be seen in Figure 3.4.

To prove this, let Cend be the last cut in this sequence. Because of invariant 1.5,

all nodes N in H with mN ≤ mCend
will be in subtrees in LCend

after fix. Since

there are no more placeholders or leaf nodes in level lmax, there are no nodes N

with mN > mCend
and, thus, S is composed only by the null node (parent of H’s

root node). Since there are no other parents outside the subtrees that have roots

with parents in S, and S has only a single element, LCend
is composed by a single

subtree, named T . Also, T ’s root has parent equal to the null node. Thus, T = H,

as intuitively suspected.
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Figure 3.4: Oblique Hierarchy Cut progression. As operators concatenate and fix
are used, the cuts sweep their associated hierarchy H. Placeholders are marked with
a P and the ones used but removed while processing lists bottom-up are also marked
with a red X.

3.2 Oblique Hierarchy Cut Front

Concomitantly with the building of H with progressive oblique cuts, a rendering

process might be traversing the already processed portions of H with the help of a

front (see Figure 3.1). Thus, for a given Oblique Hierarchy Cut C, the rendering

process will adaptively maintain a front FC restricted to the renderable part of H.

In order to ensure proper independence of FC with respect to C and other important

properties needed later, we define two invariants:

2.1 If FC is composed of n nodes, named FC,i, with 1 ≤ i ≤ n, then span(FC,1) <

· · · < span(FC,i) < span(FC,i+1) < · · · < span(FC,n).

2.2 The roots of subtrees in LC cannot enter the Front.

Invariant 2.1 ensures that sibling nodes will be adjacent in the front, which

eliminates searches and simplifies the prune operation. Invariant 2.2 is defined

because the roots of subtrees in LC are being moved among lists by the fix operator

in order to create subtrees at other levels and thus are not safe to enter the front.

Note that both invariants impose restrictions on the prune operator in order to

ensure that all nodes on the front are roots of disjoint subtrees and do not include

nodes still being processed. Similarly, placeholders cannot be pruned either since

their parents might not yet be defined.

In summary, the evaluation of an Oblique Hierarchy Cut Front consists of three

steps:

1. Concatenate new placeholders into the front.
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2. Choose the hierarchy level l where candidates for substituting placeholders in

the front are to be sought.

3. Iterate over all front nodes, testing whether they are placeholders that can be

substituted, and whether they need to be pruned, branched or rendered.

Placeholder and leaf insertions and substitutions will be further described in

the next sections. The other aspects of operators prune and branch work as usual.

All valid inner nodes are reachable by prune operations from the leaves, ensuring

proper rendering capabilities for the cut. An example of a valid Oblique Hierarchy

Cut Front is given in Figure 3.5.

Figure 3.5: Example of valid Oblique Hierarchy Cut Front. The direction of the
blue arrows indicate the order restriction imposed by invariant 2.1. The fact that
all nodes in the front are not roots in LC ensures invariant 2.2.

3.2.1 Insertion of new nodes

Since the root of H is only available after all sequential cuts are evaluated, the usual

front initialization is not possible for FC . To insert nodes in the Oblique Hierarchy

Cut Front two operators are used: insertPlaceholder and insertLeaf. In order to

simplify leaf and placeholder insertion and substitution, all leaves are first inserted

in the front as placeholders and saved in a per-level list of leaves to be replaced.

One main reason for this duplication is that new nodes are always inserted as roots

in LC,lmax , and cannot be in the front due of invariant 2.2. Thus, placeholders mark

their position until the fix operator moves them to other subtrees. The front is,

then, continuously checked to see if placeholders can be replaced by leaf nodes.

This substitution is detailed in the next section.
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The insertPlaceholder operator in its turn is simple since it can just concatenate

placeholders at the end of the front. This maintains the invariants since placeholders

are available at level lmax and they are processed in Morton order by fix.

3.2.2 Substitution of placeholders

Since the leaf lists are organized by level, and the placeholders and leaves are re-

spectively inserted into the front and into the lists in Morton order, a very simple

and efficient substitution scheme is proposed. Given a placeholder and a substitu-

tion level l, it consists in verifying if the first element in the leaf list of level l is an

ancestor of the placeholder. If it is, the leaf is removed from the substitution list

and replaces the placeholder in the front. Since comparison of Morton codes is a

fast O(1) operation, the entire placeholder substitution algorithm is also O(1).

Keeping in mind that for each front evaluation a single level l will be checked for

substitution, all leaves at level l are guaranteed to be substituted in a single front

evaluation. To verify this, note that if Pi and Pi+1 are sequential placeholders at the

same level and Lj and Lk are their leaf substitutes, then k = j+1. This comes again

from the fact that all insertion lists and front nodes at a given level are in Morton

order and that a leaf and its placeholder have a one-to-one relationship. Thus, if Pi

is substituted and, as a consequence Lj is removed from the substitution list, then

the new first leaf in that list will be Lk, resulting in Pi+1 being the next placeholder

to be successfully substituted at that level. Consequently, for each placeholder in

the front we need only to verify the first leaf of the list, and after one evaluation the

list for level l will be emptied.

3.2.3 Choice of substitution level

In order to maximize node substitution, l is chosen as the level with most insertions.

This is an obvious choice, since the list will be completely emptied after the evalua-

tion, so we are substituting the maximum number of placeholders in one iteration.

The nodes not substituted in the current front evaluation are ignored since their

corresponding leaves are not in level l. However, the corresponding leaf is already

in another list, and it is guaranteed that its substitution will occur within the next

lmax − 1 front evaluations.

3.3 Sample OMiCroN implementation

We have developed a multi-threaded implementation of the OMiCroN algorithm

in C++ where the GPU is used only for splat rendering. The implementation

follows the algorithms outlined in the previous sections, but a few adaptations are
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necessary with regard to concurrency control. Figure 3.6 shows a schematic view

of the prototype and Algorithms 1 through 8 show in detail the passes necessary

to maintain all parallel tasks correctly. The next paragraphs also describe this

implementation and algorithms.

The system is composed of several threads, as Figure 3.6 shows. Three of them

are persistent: the sorter, the fix’s master and the front tracker. The others are

short-lived ones: the fix’s slaves and the GPU loaders. The synchronization of these

threads is done using a per-level (i.e. per-morton-curve) mutual exclusion scheme.

Detailed description of them and other important related tasks is in the following.

Sorter is responsible of reading the unordered point cloud and sorting it in chunks.

The results of this task are worklists of nodes at level lmax, which are concate-

nated into the cut by pushing them into the list of level lmax. Algorithm 1

shows the process in detail while Algorithm 2 shows the concatenate operator

in detail. It is important to note the point of mutual exclusion in concate-

nate, used to ensure that the fix’s master thread does not access level lmax

simultaneously.

Fix’s master applies fix in iterations, one level l at a time, starting at level lmax.

To perform such task, it pops worklists from level l, feeding itself and a number

of issued slave threads with work. Each thread process one worklist of near

constant size. The worklist processing consists of finding sibling groups of

nodes, creating a parent for them and moving that parent to the list in level

l−1. Since everything is done in morton order by definition, sibling nodes are

always adjacent in the list. This process is done totally in parallel by the use

of a per-thread segmented buffer. After all threads finish, the master thread

verifies the segmented buffer for duplicates in the segments’ boundaries. The

duplicates occur when nodes of a sibling group are in different worklists. The

master thread also merges segments to maintain near constant worklist size.

Finally, a choice between processing the next level l − 1 or starting another

fix pass from level lmax is performed. The alternative with more worklists is

chosen so the parallelism degree is increased for the next iteration. Algorithm 3

shows the process in detail.

Parent creation. While fix is creating new parent nodes it also generates place-

holders and substitution leaves which must be sent to the front. On one hand,

placeholders are always generated for any node processed at level lmax so a

place for ancestors of that node or for the node itself is guaranteed in the

front. On the other hand, leaves are only sent to the front when their grand-

parent is created. This is done to ensure invariant 2.2. The same reason
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is behind the postponing of child-to-parent pointer creation in all nodes until

their grandparent is created. In order to maintain full parallelism for fix, place-

holders and leaves are sent to per-thread segmented buffers before achieving

their final destination at front. A final point about this stage is that, in order

to maintain the memory within a given budget, it is also possible to enable

a very simple optimization, called Leaf Collapse. This optimization removes

all leaves at level lmax which form a chain structure with their parents, i.e.,

leaves that do not have siblings. The process of creating a parent is detailed

in Algorithm 4.

Front tracker evaluates the front, rendering, prunning or branching nodes. It also

manages ṕlaceholders and leaves inserted by fix. First, it pushes all placehold-

ers to the end of the front, since they necessarily have span() greater than all

other nodes in the front. Second, it chooses the level with most leaves inserted

as the substitution level Sl. Then, all nodes in the front are evaluated in se-

quence. If a node is a placeholder, a substitution attempt is made in the list

of leaves at level Sl. This substitution is really fast and consists of checking

if the first leaf at the list is an ancestor of the placeholder. This approach is

possible because the front is sorted by span() (i.e. in morton order by level),

the lists are also sorted in morton order and an ancestry query can be done

quickly with morton codes. The substitution is detailed in Algorithm 6. If the

placeholder is substituted, then the evaluation proceeds to verify if the node

should be prunned, branched or just rendered, as usual for front-based traver-

sals. The heuristic for prunning and branching is the projection of the node’s

box on the image. In order to perform prunning, a substitution attempt is also

done for the next placeholders until a placeholder cannot be substituted or the

substituted leaf has a different parent. This is necessary to guarantee that all

sibling nodes will be prunned at the same time. Prune is also responsible of

releasing nodes from GPU if it has reached its memory quota. Finally, both

prune and branch issue the short-lived threads for node loading in GPU if nec-

essary. Algorithms 7 and 8 show prune and branch in detail, respectivelly,

while Algorithm 5 contains a detailed description of the front tracking thread.

A simple rendering approach based on splats [19] is used in our experiments.

OMiCroN nodes contain point splats defined by a center point and two tangent

vectors u and v. Parent node creation follows a policy that tries to maintain the

ratio between the number of points in a parent and its children, where a parent

contains a subset of the splats in its children with scaled tangent vectors. The splats

in the rendering queue are used as input for the traditional two-pass EWA filter

described in [22]. Several methods for computing the sizes of the projected splats
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were tested [22, 60–62]. The splat bounding box computation algorithm described

in [62] resulted in the best performance-quality relationship and all results reported

in this work applied it.

Algorithm 1: Sorter thread

Result: Sorts P into morton-ordered chunks of leaves, creates worklists and
concatenate them into the Oblique Cut.

P ← read points();
while P is not empty do

Ch← partial sort( P ); /* Chunk Ch is removed from P */

while Ch is not empty do
W ← create worklist( Ch ); /* W is removed from Ch */

concatenate( W )
end

end

Algorithm 2: concatenate() operator

Data: Worklist W
Result: Concatenates W into the max depth list of the Oblique Cut.

Ensures mutual exclusion from Fix thread.

begin mutex lmax

LC,lmax .push worklist( W );
end
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Figure 3.6: OMiCroN multithreaded prototype, composed of four parallel Tasks:
a) Sort, b) Fix, c) Front tracking, d) GPU Load. All threads are represented as
purple boxes. a) is responsible of sorting data chunks, creating nodes at level lmax

and applying concatenate on them (Algorithm 1). b) applies fix, also feeding the
front with new placeholders and leaves. This task is parallelized per level. Created
placeholders and leaves are first pushed to a per-thread segmented buffer so fix can be
fully parallel. After all threads finish, the segmented buffers are compacted and sent
to the front (Algorithm 3). c) evaluates the front, rendering, prunning and branching
nodes. Before evaluation, it concatenates at the front’s end the placeholders in
the buffer and chooses a substitution level. A placeholder is substituted at front
evaluation if its ancestor leaf is found in the list of the chosen substitution level
(Algorithm 5). d) consists of short-lived theads responsible of loading nodes into
the GPU.
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Algorithm 3: Fix master thread

Data: Oblique Cut lists LC,l, Front F
Result: Applies fix by evaluating lists bottom-up, creating parent nodes and

placeholders.

l← lmax;
while Sorter thread still reading OR sorting do

while l > 0 do
while LC,l has work do

// pop worklists must be exclusive if l = lmax

if l = lmax then
begin mutex lmax

W ← pop worklists( LC,l );
end

else
W ← pop worklists( LC,l );

end
foreach Wi in W , in parallel do

foreach sibling group Sgj in Wi do
Pj ← create parent(Sgj, i);
Ti.push(Pj); /* Per-thread buffer Ti */

end

end
// Check per-thread buffer boundaries for duplicates.

// Merge them to have constant worklist size.

remove duplicates and merge( T );
LC,l−1.push worklists( T );
// Created placeholders and leaves in create parent()

must be sent to the front. Mutual exclusion from

front thread is needed.

begin mutex lmax

send placeholders();
end
begin mutex leaf level

send leaves();
end

end
if LC,l−1 has more work than LC,lmax then

l← l − 1;
else

l← lmax;
end

end

end
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Algorithm 4: create parent()

Data: Sibling group Sg, Thread id t
Result: Creates a parent node for Sg. The pointers to parent nodes are only

set at grandchild level to ensure invariant 2.2. Accumulates new
placeholders and granchild leaves in per-thread buffers.

Pa← get points( Sg, parent point ratio );
if leaf collapse on AND Sg.size = 1 AND Sg at level lmax then

delete( Sg );
else

Pa.set pointer to children( Sg );
end
foreach Sgi in Pa.children do

if Sgi at level lmax then
P = create placeholder( Sgi );
send to placeholder buffer( P , t );

else
Gs← Sgi.get children();
foreach Gsj in Gs do

if Gsj is leaf then
send to leaf buffer(Gsj, Gsj.level(), t);

end
create pointer to parent( Gsj );

end

end

end
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Algorithm 5: Front evaluation thread

Data: Front F
Result: Evaluates the front. Renders, prunes or branches nodes and

substitutes placeholders.

start frame();
begin mutex lmax

// Inserts at the front ending any placeholder sent by Fix .

insert placeholders();

end
Sl← level with most leaves to substitute;
foreach node N in F do

if N is placeholder then
try substitution( N , Sl );

end
if N is not placeholder then

P ← N .parent;
if P projection < threshold OR P is frustum cullable then

foreach Sb in N .siblings do
if Sb is placeholder then

// Ensures the entire sibling group is there.

try substitution( Sb, Sl );

end

end
prune( P , N );

else
if N projection < threshold AND N is not frustum cullable then

branch(N);
else

if N is not frustum cullable then
N .queue rendering();

end

end

end

end

end
end frame();
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Algorithm 6: try substitution()

Data: Placeholder P , substitution level Sl, Front F
Result: Substitutes a placeholder if an ancestor leaf node is found.

begin mutex Sl
candidate Ca← F .leaves[Sl][0];
// Next comparison is fast using morton code

if Ca is ancestor of P then
P ← Ca;

end

end

Algorithm 7: Prune

Data: Parent node P , child node N , Front F
Result: Prunes N and its siblings from the front if conditions are met. The

parent P takes their place.

if P is loaded on GPU then
F .remove( N and N .siblings );
F .insert( P );
P .queue rendering();
if reached GPU mem quota then

N .unload from GPU();
N .siblings.unload from GPU();

end

else
// Issues a short-lived thread for data transference to GPU.

P .load in GPU();
N .queue rendering();

end

Algorithm 8: Branch

Data: Node N , Front F
Result: Branches N if conditions are met. Its place is taken by its children.

Ch← N .children;
if Ch are loaded in GPU then

F .remove( N );
F .insert( Ch );
Ch.queue rendering();

else
// Issues a short-lived thread for data transference to GPU.

Ch.load in GPU();
N .queue rendering();

end
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Chapter 4

Experiments

The prototype implementation was tested using four point cloud datasets: David

(469M points, 11.2GB), Atlas (255M points, 6.1GB), St. Matthew (187M points,

4.5GB) and Duomo (100M points, 2.4GB), all processed with hierarchies with 7

levels (Figure 4.1). Coordinates in all datasets were normalized to the range [0, 1].

David, Atlas and St. Matthew were obtained at the Digital Michelangelo Project

page.

4.1 Rendering latency tests

To assess the actual delay from the moment the raw unsorted collection of points

is available to the moment where rendering actually starts, we must consider the

sorting process in some depth. The simplest scenario consists of a separate thread

that reads the whole collection, sorts it and streams it to OMiCroN. In this case,

OMiCroN must wait at least for the whole collection to be read by the sorting

thread, and for the sort itself. In a more elaborate setup, the sorting process might

start feeding OMiCroN as soon as a prefix of the sorted collection becomes available.

In order to measure these gains, we conducted a set of experiments. Our testbed

consists of a desktop computer with an Intel Core i7-3820 processor with 16GB

memory, NVidia GeForce GTX 750 and a SanDisk 120GB SSD. The maximum

hierarchy depth was set to 7. The same SSD is used for swap and I/O.

The first experiment consisted of consecutively sorting and streaming chunks

of the input to OMiCroN. We use the parallel IntroSort available in the Standard

Template Library (STL) of the C++ programming language (std::partial sort() or

std::sort()). Parallel rendering and leaf collapse are enabled for these tests. Since

rendering starts as soon as the first sorted chunk becomes available, using more

chunks allows rendering to start earlier, as shown in Figure 4.2. In particular,

increasing the number of sorting chunks can improve the time between the moment

input finishes and rendering starts from 5 to 31 times, depending on the size of
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(a) David (b) Atlas

(c) St. Matthew (d) Duomo

Figure 4.1: The datasets used in experiments. Rendered using OMiCroN.

the dataset. The price of having this early rendering is that hierarchy creation

time may increase up to 4 times for smaller datasets. Nonetheless, the partial sort

plays an important role in reducing or eliminating the use of swap during sort and

hierarchy creation, resulting in better timings in all aspects for large datasets such as

David. This interesting result is demonstrated in Figure 4.2c. The conclusion is that

OMiCroN’s preprocessing is very flexible. The partial sort can be used to reduce the

swap area usage or to reduce the delay for the first rendering. One must respect the

inherent tradeoff of increasing the number of chunks to find the optimal number for

a given dataset at hand. As a final note, OMiCroN consumes sorted chunks almost

as fast as they are produced and streamed, and the hierarchy is finished at most 1s
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after the last byte of the sorted stream is read.

The second experiment consists of profiling and comparing OMiCroN with the

parallel rendering activated and deactivated at hierarchy creation time, also evalu-

ating the system core usage while running the algorithm. The purpose of this test

is to measure the overhead of parallel rendering and the overall usage of resources.

The input for this test consists of the datasets already sorted in Morton order and

the data is streamed directly from disk. Leaf collapse is disabled. Figure 4.3 shows

the results. The overhead imposed is between 20% (David) and 34% (St.Matthew),

which is an evidence that the overhead impact decreases as the dataset size increases.

This is a desirable property for an algorithm designed to handle large datasets. The

final observation from this experiment is that OMiCroN maintains the usage of all

8 logical cores near 90% with peaks of 100% for the entire hierarchy creation pro-

cedure, with parallel rendering enabled or disabled. This fact justifies OMiCroN’s

fast hierarchy creation times.

The third experiment generates data for better understanding the hierarchy cre-

ation progression over time. It consists of measuring the time needed to achieve

percentile milestones of hierarchy creation. The best scenario is a linear progression

over time so new data can be presented smoothly to the user while the hierarchy is

being constructed. For this test, the sorted data is streamed directly from disk, par-

allel rendering is enabled and leaf collapse is disabled unless pointed otherwise. The

results are presented in Figure 4.4. We can conclude that the hierarchy construction

has the expected linear progression. The exception is the David dataset with leaf

collapse disabled. This behavior is caused by the hierarchy size, which exceeds avail-

able memory, forcing the use of swap area and degradation of performance. This

problem is solved when leaf collapse is enabled, as Figure 4.4 also demonstrates.

4.2 Hierarchy creation and rendering

A second set of experiments were conducted to assess OMiCroN’s behavior in terms

of memory usage and performance. All experiments in this set read a sorted dataset

directly from disk. The test system had an Intel Core i7-6700, 16GB memory,

NVidia GeForce GTX 1070, and secondary SSD storage with roughly 130 MB/s

reading speed. Two main parameters impact OMiCroN’s memory footprint: Leaf

Collapse optimization and parent to children point ratio, as shown in Table 4.1.

These also impact the reconstruction quality of the algorithm as can be seen in

Figures 4.5, 4.6, 4.7 and 4.8.

Even though limited to datasets that fit in RAM unless swap space is used,

OMiCroN can be set up to fit a broad range of memory budgets. For example,

David originally occupies 11.2 GB in disk, while its maximum size in memory when
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Figure 4.2: Impact of the number of sort chunks. After a constant time spent
reading the input (blue), the first chunk is sorted (red), starting the parallel hierarchy
creation and rendering (orange). The first column in all charts corresponds to the
case where all input is sorted before the hierarchy creation begins.
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Figure 4.3: Comparison of hierarchy creation with and without parallel rendering.
Sorted data is streamed directly from disk. The overhead imposed by parallel ren-
dering is between 20% (David) and 34% (St. Matthew).

using Leaf Collapse is 8.5 or 9.9 GB, for parent to children point ratios of 0.2 and 0.25

respectively. In this case, a hierarchy with 0.2 ratio has memory usage of roughly

76% of the original dataset size in disk. Values smaller than these are possible since

reconstruction results shown in Figure 4.5 are still acceptable. It is also important

to note that the algorithm does not compact in any way the point or Morton code

data. The use of such techniques would provide even better memory consumption.

Table 4.1 also shows that the total hierarchy creation times and the average CPU

usage per frame are affected by the Leaf Collapse optimization. The CPU times were

obtained during a rendering session where the camera is constantly moving trying

to focus the parts of the model being read from disk. For the David dataset, for

example, it takes 88.2s to read the data from disk, while OMiCroN imposes an

overhead ranging from 0.66 to 1.6 in the tested scenarios. We also notice that CPU

times are probably affected by the Leaf Collapse optimization because the hierarchy

is simplified when the leaf nodes are removed, resulting in smaller hierarchy fronts.

The worklist size is the parameter that controls the work granularity in the

hierarchy creation. In other words, it controls the throughput of new nodes available
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Figure 4.4: Hierarchy creation over time. Sorted data is streamed directly from disk,
parallel rendering is enabled and leaf collapse is disabled unless pointed otherwise.

for the hierarchy creation threads to process. Table 4.2 shows the relationship

between the worklist size and attributes that are expected to be directly affected

by it. It also shows that the front insertion delay scales linearly with the worklist

size. As a consequence, larger worklists impose a longer delay for the user to see

new parts of the cloud while navigating. Additionally, the optimal worklist size

regarding front size is between 32 and 64. Since nodes are processed in a bottom-up

manner and smaller fronts are expected to have nodes from shallower parts of the

hierarchy, setups with smaller fronts are also expected to have processed more nodes

from deeper levels than other setups with larger fronts, given the same time spent in

processing. As a consequence, hierarchy construction time is reduced in setups with

smaller fronts, as Table 4.2 also indicates. Similarly, benefits in overall performance

of front evaluation are obviously related to smaller front sizes, resulting in less CPU

overhead.

Another experiment we judge appropriate is comparing OMiCroN with the sim-

plest algorithm to build an octree for large point clouds. This way we can evaluate if

the relation between OMiCroN’s benefits and complexity is worthwhile. The chosen

algorithm is a monothreaded top-down octree creator which subdivides nodes when
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Table 4.1: Relationship between the algorithm reconstruction parameters – leaf
collapse, parent to children ratio – and memory footprint, total hierarchy creation
times, and average CPU usage per frame.

Model Coll Ratio Mem Creation CPU

David On 0.20 8.5GB 146.3s 7.6ms

David On 0.25 9.9GB 151.2s 8.8ms

David Off 0.20 21GB 229.8s 16.7ms

Atlas On 0.20 2.3GB 77.8s 11.9ms

Atlas On 0.25 3.0GB 81.9s 11.0ms

Atlas Off 0.20 11.5GB 120.8s 16.2ms

Matthew On 0.20 1.7GB 59.6s 13.7ms

Matthew On 0.25 2.2GB 60.9s 11.6ms

Matthew Off 0.20 8.4GB 80.6s 25.0ms

Duomo On 0.20 0.9GB 31.0s 18.2ms

Duomo On 0.25 1.2GB 32.6s 23.1ms

Duomo Off 0.20 4.5GB 40.0s 21.9ms

Table 4.2: Relationship between the worklist size and performance indicators: front
insertion delay, front size, hierarchy construction time and average CPU usage per
frame. Numbers refer to the David dataset, no leaf collapse and point ratio 0.25.

Worklist Insertion Front Hierarchy CPU

8 127ms 529 274.8s 19.5ms

16 212ms 439 259.8s 17.8ms

32 399ms 401 248.6s 16.0ms

64 831ms 500 258.0s 20.8ms

128 1646ms 506 255.7s 19.7ms

36



(a) David, leaf collapse on, 0.2 point ratio.

(b) David, leaf collapse on, 0.25 point ratio.

(c) David, leaf collapse off, 0.25 point ratio.

Figure 4.5: Rendering comparison of hierarchies with different leaf collapse and
parent to children point ratio parameters. The final reconstructions are very detailed
even at close range and the differences when the leaf collapse is turned on are almost
imperceptible.
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(a) Atlas, leaf collapse on, 0.2 point ratio.

(b) Atlas, leaf collapse on, 0.25 point ratio.

(c) Atlas, leaf collapse off, 0.25 point ratio.

Figure 4.6: Rendering comparison of hierarchies with different leaf collapse and
parent to children point ratio parameters. The final reconstructions are very detailed
even at close range and the differences when the leaf collapse is turned on are almost
imperceptible.
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(a) St. Matthew, leaf collapse on, 0.2 point ratio.

(b) St. Matthew, leaf collapse on, 0.25 point ratio.

(c) St. Matthew, leaf collapse off, 0.25 point ratio.

Figure 4.7: Rendering comparison of hierarchies with different leaf collapse and
parent to children point ratio parameters. The final reconstructions are very detailed
even at close range and the differences when the leaf collapse is turned on are almost
imperceptible.
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(a) Duomo, leaf collapse on, 0.2 point ratio.

(b) Duomo, leaf collapse on, 0.25 point ratio.

(c) Duomo, leaf collapse off, 0.25 point ratio.

Figure 4.8: Rendering comparison of hierarchies with different leaf collapse and
parent to children point ratio parameters. The hierarchy for Duomo suffers from
lack of density when leaf collapse is turned on because the dataset itself has smaller
density in comparison with the others.
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their size in number of points reaches a given threshold K = 10000. We have tested

it with the Atlas and St. Matthew datasets only, since it exceeded memory limits

for David. Including input time, the hierarchy for Atlas was created in 8.6 minutes,

while St. Matthew was processed in 3.6 minutes. Comparing these results with

Figure 4.2, OMiCroN not only creates the hierarchy several times faster, but it can

also start rendering the datasets up to near 8 times earlier than the renderer using

the top-down octree creator.

We also found it useful to compare OMiCroN with other algorithms that create

hierarchies for large datasets. To this end, we used the binary voxelization method

for large meshes described in [6], which is the only freely available implementation

of an algorithm for creating Octrees for large datasets we could find. The paper

presents another version with per-leaf normals and vertex colors, but it generates

more than 100GB of intermediate data for some of our datasets. It should be noted

that [6] operates on triangle meshes, and thus the input datasets are roughly twice

as big as those containing only the vertices as used by OMiCroN. However, since a

voxelization is an abrupt simplification of the original dataset, the difference in input

is compensated by the fact that Octree nodes handled by OMiCroN are populated

with thousands or millions of points while the Octree nodes in the voxelization are

boolean values, resulting in extremely compact Octrees with just a few KBytes. For

example, the Octree generated by OMiCroN for the David without leaf collapse has

more than 22GB. In our tests, [6] was given a memory quota of 16GB and set to a

grid size of 128, which is equivalent to a hierarchy of depth 7. OMiCroN was also run

for depth 7, with no rendering, leaf collapse enabled, while sorting was performed

with 10 chunks. All input datasets were not sorted. In our tests, OMiCroN finishes

building the hierarchy 3 to 5 times faster than [6], which indicates that, even in

a traditional setup where preprocessing precedes rendering, OMiCroN is still very

competitive. Table 4.3 shows all statistics generated by this test.

4.3 Rendering parameters

The leaf splat tangents vectors u and v have constant length which are scaled up by

multipliers creating parent nodes from children. These parameters impose a trade-

off between blurriness and hole filling. In practice, a very large tangent size results

in blurry reconstructions and poor performance, while a very small value results in

holes and fast performance. In our experiments, we used leaf splat tangent vectors

with sizes ranging from 0.00002 and 0.00008, while tangent multipliers were set

between 2 and 5. Table 4.4 presents the range of leaf splat tangents sizes used in

our tests, while Table 4.5 shows the best value ranges for splat tangent multipliers.

We arrived at these values from trial and error experiments. It is important to
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Table 4.3: Time comparison between OMiCroN with and without parallel rendering
and [6]. I/O times are separated for preprocessing and creation tasks. Expections
are tasks in [6] which does not report I/O times explictly. In these cases task times
also include I/O. The most important lines are titled “Creation“, which contain
the time needed to create the hierarchy after input and preprocessing, and “Until
render“, which show the total time before any image is generated, including I/O.
They show how OMiCroN minimizes data evaluation delays.

(a) David

Rendering No rendering Baert [6]

Preprocessing 6m39s 6m39s 15m36s

Preprocessing Input 2m11s 2m11s –

Preprocessing Output 3m41s 3m41s –

Creation 5m36s 4m28s 15m39s

Until render 12m34s 17m1s 31m15s

Nodes 45936 45936 29576

Points 625M 625M 0

(b) Atlas

Rendering No rendering Baert [6]

Preprocessing 48s 48s 5m16s

Preprocessing Input 1m14s 1m14s –

Preprocessing Output 1m10s 1m10s –

Creation 2m12s 1m33s 8m1s

Until render 3m12s 4m45s 13m17s

Nodes 49186 49186 71282

Points 340M 340M 0

(c) St. Matthew

Rendering No rendering Baert [6]

Preprocessing 35s 35s 3m45s

Preprocessing Input 54s 54s –

Preprocessing Output 45s 45s –

Creation 1m30s 59s 5m54s

Until render 2m14s 3m13s 9m39s

Nodes 54788 54788 59277

Points 249M 249M 0
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Table 4.4: Best values for leaf splat tangents size, per model.

Model u v

David 0.000037 0.00003

Atlas 0.00008 0.00007

St. Matthew 0.000085 0.000055

Duomo 0.00008 0.00002

Table 4.5: Best value ranges for splat tangent multipliers from hierachy level 7 to 3.

Level u v

7 3.8 – 4.7 3.5 – 4.7

6 2.3 – 3.0 1.9 – 2.5

5 2.0 – 2.8 1.5 – 2.3

4 2.0 – 2.5 1.7 – 2.5

3 2.0 2.0

remember that the datasets are normalized, since their scale affects the leaf splats

tangent sizes.

The number of front segments is a parameter that can ease the CPU overhead

at a cost of more delays in level of detail changes when rendering. After many

experiments, we found that values ranging from 1 to 10 provide good results. Larger

values excessively increase the front size since placeholders start to accumulate at the

end of the front. These placeholders cannot suffer pruning, inhibitting the decrement

in front size.

The projection threshold parameter is used to ensure proper level of detail when

rendering, and we found that values around 0.2 provide good results. This value

refers to the length of a node’s projected diagonal in normalized device coordinates,

so that nodes smaller than the threshold tend to be pruned while those larger tend

to be branched. Larger values result in blurrier images as a consequence of coarser

level-of-detail, but accelerate the renderer, while smaller values result in finer images

but reduce the rendering speed. All tests in this chapter used a projection threshold

of 0.2.
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Chapter 5

Conclusion

In this work, we presented OMiCroN, a flexible and generic algorithm for rendering

large point clouds. We know of no other method that can render incomplete hier-

archies with full detail in parallel with its construction and data sorting. Rather,

the vast majority of algorithms in this category rely on heavy preprocessing, which

largely outweighs the time complexity of the rendering algorithm proper. OMiCroN,

on the other hand, needs only a sorted prefix of the input geometry in Morton code

order to start rendering. In practice, this sort can adapt to start rendering models

as early as the time needed to read input. OMiCroN’s feedback-based design allows

construction of Octrees on-the-fly and can help implementors with accurate render-

ing feedback of the construction process. We also defined the novel idea of Hierarchy

Oblique Cut, a strong concept that can be used to apply sweeps on hierarchies.

Additionally, OMiCroN opens the path for new workflows based on streaming

of spatially sorted data. Supposing that large scans could be streamed directly

in Morton order, the data could be rendered without any delays at all, enabling

earlier detection of acquisition problems. Another advantage is that the hierarchical

nature of Morton order can be explored, so datasets are sorted only once using a

deep Morton code level but can be rendered by OMiCroN using a hierarchy with

any level less or equal to the sorting level. This property renders the algorithm even

more flexible, since a single sorted dataset can be used with many hierarchy setups.

OMiCroN has limitations. First, it is not out-of-core. We opt to not incorpo-

rate this paradigm yet because out-of-core algorithms are known to have non-trivial

implementation [50]. Another limitation is the overhead caused by rendering the

data while constructing its associated hierarchy, which may drain resources that

otherwise could be used for more complex rendering techniques when preprocessing

is available. However, the benefits of minimal delay requirements may be com-

pelling for workflows that depend on fast evaluation of acquired data. This fact also

makes OMiCroN a good choice for previewing large datasets before applying a more

complex and heavy pre-processing technique.
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Regarding future directions, OMiCroN has several possible paths to follow. The

splat renderer uses parameters set manually during the experiments, since it was

not the focus of this work, rather we concentrated our efforts on the hierarchy

construction and high-level rendering management. However, it could be further

improved by developing methods to automatically find the optimal parameters, such

as initial u and v vectors, and a better hierarchical representation of the splats [63].

Also, although OMiCroN is limited to models that fit in RAM, it is in the path

to be integrated with the out-of-core paradigm. This statement is justified by the

node collapse concept, which can be substituted by a flush to secondary storage. [6]

have already shown successful use of out-of-core paradigm for Morton-ordered data.

Moreover, in theory, OMiCroN’s deepest abstraction layer could be modified to use

the algorithm in other Computer Graphics problems involving the use of Morton-

ordered hierarchical structures, such as raytracing, voxelization and reconstruction.
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[48] CORRÊA, W. T., KLOSOWSKI, J. T., SILVA, C. T. “Out-of-core sort-first

parallel rendering for cluster-based tiled displays”, Parallel Computing,

v. 29, n. 3, pp. 325–338, 2003.
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