![]() |
Python_2
1.0
|
A matplotlib example. More...
Functions | |
def | fake_bootstrapper (n) |
plt.show() More... | |
Variables | |
int | spread = np.random.rand(50) * 100 |
int | center = np.ones(25) * 50 |
int | flier_high = np.random.rand(10) * 100 + 100 |
int | flier_low = np.random.rand(10) * -100 |
data = np.concatenate((spread, center, flier_high, flier_low)) | |
fig | |
axs | |
left | |
right | |
bottom = -5 | |
top = 40 | |
hspace | |
wspace | |
d2 = np.concatenate((spread, center, flier_high, flier_low)) | |
ax | |
list | random_dists |
plt.show() More... | |
int | N = 500 |
norm = np.random.normal(1, 1, N) | |
logn = np.random.lognormal(1, 1, N) | |
expo = np.random.exponential(1, N) | |
gumb = np.random.gumbel(6, 4, N) | |
tria = np.random.triangular(2, 9, 11, N) | |
bootstrap_indices = np.random.randint(0, N, N) | |
ax1 | |
figsize | |
bp = ax1.boxplot(data, notch=0, sym='+', vert=1, whis=1.5) | |
color | |
marker | |
True | |
linestyle | |
which | |
alpha | |
axisbelow | |
title | |
xlabel | |
ylabel | |
list | box_colors = ['darkkhaki', 'royalblue'] |
num_boxes = len(data) | |
medians = np.empty(num_boxes) | |
box = bp['boxes'][i] | |
list | box_x = [] |
list | box_y = [] |
box_coords = np.column_stack([box_x, box_y]) | |
med = bp['medians'][i] | |
list | median_x = [] |
list | median_y = [] |
markeredgecolor | |
rotation | |
fontsize | |
int | pos = np.arange(num_boxes) + 1 |
list | upper_labels = [str(round(s, 2)) for s in medians] |
list | weights = ['bold', 'semibold'] |
int | k = tick % 2 |
transform | |
horizontalalignment | |
size | |
weight | |
backgroundcolor | |
float | inc = 0.1 |
e1 = np.random.normal(0, 1, size=500) | |
e2 = np.random.normal(0, 1, size=500) | |
e3 = np.random.normal(0, 1 + inc, size=500) | |
e4 = np.random.normal(0, 1 + 2 * inc, size=500) | |
list | treatments = [e1, e2, e3, e4] |
med1 | |
ci1 | |
med2 | |
ci2 | |
list | conf_intervals = [None, None, ci1, ci2] |
markersize | |
A matplotlib example.
def _04e_boxplot_demo.fake_bootstrapper | ( | n | ) |
plt.show()
This is just a placeholder for the user's method of bootstrapping the median and its confidence intervals. Returns an arbitrary median and confidence interval packed into a tuple.
_04e_boxplot_demo.alpha |
_04e_boxplot_demo.ax |
_04e_boxplot_demo.ax1 |
_04e_boxplot_demo.axisbelow |
_04e_boxplot_demo.axs |
_04e_boxplot_demo.backgroundcolor |
int _04e_boxplot_demo.bottom = -5 |
_04e_boxplot_demo.box = bp['boxes'][i] |
list _04e_boxplot_demo.box_colors = ['darkkhaki', 'royalblue'] |
list _04e_boxplot_demo.box_x = [] |
list _04e_boxplot_demo.box_y = [] |
_04e_boxplot_demo.bp = ax1.boxplot(data, notch=0, sym='+', vert=1, whis=1.5) |
int _04e_boxplot_demo.center = np.ones(25) * 50 |
_04e_boxplot_demo.ci1 |
_04e_boxplot_demo.ci2 |
_04e_boxplot_demo.color |
_04e_boxplot_demo.d2 = np.concatenate((spread, center, flier_high, flier_low)) |
list _04e_boxplot_demo.data = np.concatenate((spread, center, flier_high, flier_low)) |
_04e_boxplot_demo.e1 = np.random.normal(0, 1, size=500) |
_04e_boxplot_demo.e2 = np.random.normal(0, 1, size=500) |
_04e_boxplot_demo.expo = np.random.exponential(1, N) |
_04e_boxplot_demo.fig |
_04e_boxplot_demo.figsize |
int _04e_boxplot_demo.flier_high = np.random.rand(10) * 100 + 100 |
int _04e_boxplot_demo.flier_low = np.random.rand(10) * -100 |
_04e_boxplot_demo.fontsize |
_04e_boxplot_demo.gumb = np.random.gumbel(6, 4, N) |
_04e_boxplot_demo.horizontalalignment |
_04e_boxplot_demo.hspace |
float _04e_boxplot_demo.inc = 0.1 |
int _04e_boxplot_demo.k = tick % 2 |
_04e_boxplot_demo.left |
_04e_boxplot_demo.linestyle |
_04e_boxplot_demo.logn = np.random.lognormal(1, 1, N) |
_04e_boxplot_demo.marker |
_04e_boxplot_demo.markeredgecolor |
_04e_boxplot_demo.markersize |
_04e_boxplot_demo.med1 |
_04e_boxplot_demo.med2 |
list _04e_boxplot_demo.median_x = [] |
list _04e_boxplot_demo.median_y = [] |
list _04e_boxplot_demo.medians = np.empty(num_boxes) |
int _04e_boxplot_demo.N = 500 |
_04e_boxplot_demo.norm = np.random.normal(1, 1, N) |
_04e_boxplot_demo.num_boxes = len(data) |
int _04e_boxplot_demo.pos = np.arange(num_boxes) + 1 |
list _04e_boxplot_demo.random_dists |
_04e_boxplot_demo.right |
_04e_boxplot_demo.rotation |
_04e_boxplot_demo.size |
int _04e_boxplot_demo.spread = np.random.rand(50) * 100 |
_04e_boxplot_demo.title |
Referenced by _08c_clock.clock.paint_hms().
int _04e_boxplot_demo.top = 40 |
_04e_boxplot_demo.transform |
_04e_boxplot_demo.tria = np.random.triangular(2, 9, 11, N) |
_04e_boxplot_demo.True |
list _04e_boxplot_demo.upper_labels = [str(round(s, 2)) for s in medians] |
_04e_boxplot_demo.weight |
list _04e_boxplot_demo.weights = ['bold', 'semibold'] |
_04e_boxplot_demo.which |
_04e_boxplot_demo.wspace |
_04e_boxplot_demo.xlabel |
_04e_boxplot_demo.ylabel |